Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Koehbach is active.

Publication


Featured researches published by Johannes Koehbach.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design.

Johannes Koehbach; Margaret O'Brien; Markus Muttenthaler; Marion Miazzo; Muharrem Akcan; Alysha G. Elliott; Norelle L. Daly; Peta J. Harvey; Sarah Arrowsmith; Sunithi Gunasekera; Terry J. Smith; Susan Wray; Ulf Göransson; Philip E. Dawson; David J. Craik; Michael Freissmuth; Christian W. Gruber

Significance G protein-coupled receptors (GPCRs) are promising drug targets: >30% of the currently marketed drugs elicit their actions by binding to these transmembrane receptors. However, only ∼10% of all GPCRs are targeted by approved drugs. Resorting to plant-derived compounds catalogued by ethnopharmacological analyses may increase this repertoire. We provide a proof of concept by analyzing the uterotonic action of an herbal remedy used in traditional African medicine. We identified cyclic peptides, investigated the molecular mechanisms underlying their uterotonic activity, and report an oxytocic plant peptide that modulates the human oxytocin/vasopressin receptors. This naturally occurring peptide served as a template for the design of an oxytocin-like nonapeptide with enhanced receptor selectivity, highlighting the potential of cyclotides for the discovery of peptide-based GPCR ligands. Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as “kalata-kalata,” the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V1a receptors, members of the G protein-coupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands.


Biopolymers | 2013

Cyclotide Discovery in Gentianales Revisited—Identification and Characterization of Cyclic Cystine-Knot Peptides and Their Phylogenetic Distribution in Rubiaceae Plants

Johannes Koehbach; Alfred F. Attah; Andreas Berger; Roland Hellinger; Toni M. Kutchan; Eric J. Carpenter; Megan Rolf; Mubo A. Sonibare; Jones O. Moody; Gane Ka-Shu Wong; Steven Dessein; Harald Greger; Christian W. Gruber

Cyclotides are a unique class of ribosomally synthesized cysteine-rich miniproteins characterized by a head-to-tail cyclized backbone and three conserved disulfide-bonds in a knotted arrangement. Originally they were discovered in the coffee-family plant Oldenlandia affinis (Rubiaceae) and have since been identified in several species of the violet, cucurbit, pea, potato, and grass families. However, the identification of novel cyclotide-containing plant species still is a major challenge due to the lack of a rapid and accurate analytical workflow in particular for large sampling numbers. As a consequence, their phylogeny in the plant kingdom remains unclear. To gain further insight into the distribution and evolution of plant cyclotides, we analyzed ∼300 species of >40 different families, with special emphasis on plants from the order Gentianales. For this purpose, we have developed a refined screening methodology combining chemical analysis of plant extracts and bioinformatic analysis of transcript databases. Using mass spectrometry and transcriptome-mining, we identified nine novel cyclotide-containing species and their related cyclotide precursor genes in the tribe Palicoureeae. The characterization of novel peptide sequences underlines the high variability and plasticity of the cyclotide framework, and a comparison of novel precursor proteins from Carapichea ipecacuanha illustrated their typical cyclotide gene architectures. Phylogenetic analysis of their distribution within the Psychotria alliance revealed cyclotides to be restricted to Palicourea, Margaritopsis, Notopleura, Carapichea, Chassalia, and Geophila. In line with previous reports, our findings confirm cyclotides to be one of the largest peptide families within the plant kingdom and suggest that their total number may exceed tens of thousands.


Journal of Neuroendocrinology | 2012

The nonpeptide oxytocin receptor agonist WAY 267,464: receptor-binding profile, prosocial effects and distribution of c-Fos expression in adolescent rats.

Callum Hicks; William T. Jorgensen; C. Brown; Joanna E. Fardell; Johannes Koehbach; Christian W. Gruber; Michael Kassiou; Glenn E. Hunt; Iain S. McGregor

Previous research suggests that the nonpeptide oxytocin receptor (OTR) agonist WAY 267,464 may only partly mimic the effects of oxytocin in rodents. The present study further explored these differences and related them to OTR and vasopressin 1a receptor (V1aR) pharmacology and regional patterns of c‐Fos expression. Binding data for WAY 267,464 and oxytocin were obtained by displacement binding assays on cellular membranes, while functional receptor data were generated by luciferase reporter assays. For behavioural testing, adolescent rats were tested in a social preference paradigm, the elevated plus‐maze (EPM) and for locomotor activity changes following WAY 267,464 (10 and 100 mg/kg, i.p.) or oxytocin (0.1 and 1 mg/kg, i.p.). The higher doses were also examined for their effects on regional c‐Fos expression. Results showed that WAY 267,464 had higher affinity (Ki) at the V1aR than the OTR (113 versus 978 nm). However, it had no functional response at the V1aR and only a weak functional effect (EC50) at the OTR (881 nm). This suggests WAY 267,464 is an OTR agonist with weak affinity and a possible V1aR antagonist. Oxytocin showed high binding at the OTR (1.0 nm) and V1aR (503 nm), with a functional EC50 of 9.0 and 59.7 nm, respectively, indicating it is a potent OTR agonist and full V1aR agonist. WAY 267,464 (100 mg/kg), but not oxytocin, significantly increased the proportion of time spent with a live rat, over a dummy rat, in the social preference test. Neither compound affected EPM behaviour, whereas the higher doses of WAY 267,464 and oxytocin suppressed locomotor activity. WAY 267,464 and oxytocin produced similar c‐Fos expression in the paraventricular hypothalamic nucleus, central amygdala, lateral parabrachial nucleus and nucleus of the solitary tract, suggesting a commonality of action at the OTR with the differential doses employed. However, WAY 267,464 caused greater c‐Fos expression in the medial amygdala and the supraoptic nucleus than oxytocin, and lesser effects in the locus coeruleus. Overall, our results confirm the differential effects of WAY 267,464 and oxytocin and suggest that this may reflect contrasting actions of WAY 267,464 and oxytocin at the V1aR. Antagonism of the V1aR by WAY 267,464 could underlie some of the prosocial effects of this drug either through a direct action or through disinhibition of oxytocin circuitry that is subject to vasopressin inhibitory influences.


Journal of Natural Products | 2012

Do plant cyclotides have potential as immunosuppressant peptides

Carsten Gründemann; Johannes Koehbach; Roman Huber; Christian W. Gruber

Cyclotides are an abundant and diverse group of ribosomally synthesized plant peptides containing a cyclic cystine-knotted structure that confers them with remarkable stability. They are explored for their distribution in plants, although little is known about the individual peptide content of a single species. Therefore, we chemically analyzed the crude extract of the coffee-family plant Oldenlandia affinis using a rapid peptidomics workflow utilizing nano-LC-MS, peptide reconstruct with database identification, and MS/MS automated sequence analysis to determine its cyclotide content. Biologically, cyclotides are mainly explored for applications in agriculture and drug design; here we report their growth-inhibiting effects on primary cells of the human immune system using biological and immunological end points in cell-based test systems. LC-MS quantification of the active O. affinis plant extract triggered the characterization of the antiproliferative activity of kalata B1, one of the most abundant cyclotides in this extract, on primary activated human lymphocytes. The effect has a defined concentration range and was not due to cytotoxicity, thus opening a new avenue to utilize native and synthetically optimized plant cyclotides for applications in immune-related disorders and as immunosuppressant peptides.


Amino Acids | 2013

Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry

Hossein Hashempour; Johannes Koehbach; Norelle L. Daly; Alireza Ghassempour; Christian W. Gruber

Cyclotides are a very abundant class of plant peptides that display significant sequence variability around a conserved cystine-knot motif and a head-to-tail cyclized backbone conferring them with remarkable stability. Their intrinsic bioactivities combined with tools of peptide engineering make cyclotides an interesting template for the design of novel agrochemicals and pharmaceuticals. However, laborious isolation and purification prior to de novo sequencing limits their discovery and hence their use as scaffolds for peptide-based drug development. Here we extend the knowledge about their sequence diversity by analysing the cyclotide content of a violet species native to Western Asia and the Caucasus region. Using an experimental approach, which was named sequence fragment assembly by MALDI-TOF/TOF, it was possible to characterize 13 cyclotides from Viola ignobilis, whereof ten (vigno 1–10) display previously unknown sequences. Amino acid sequencing of various enzymatic digests of cyclotides allowed the accurate assembly and alignment of smaller fragments to elucidate their primary structure, even when analysing mixtures containing multiple peptides. As a model to further dissect the combinatorial nature of the cyclotide scaffold, we employed in vitro oxidative refolding of representative vigno cyclotides and confirmed the high dependency of folding yield on the inter-cysteine loop sequences. Overall this work highlights the immense structural diversity and plasticity of the unique cyclotide framework. The presented approach for the sequence analysis of peptide mixtures facilitates and accelerates the discovery of novel plant cyclotides.


Journal of Ethnopharmacology | 2012

Uterine contractility of plants used to facilitate childbirth in Nigerian ethnomedicine

Alfred F. Attah; Margaret O'Brien; Johannes Koehbach; Mubo A. Sonibare; Jones O. Moody; Terry J. Smith; Christian W. Gruber

Ethnopharmacological relevance Pregnant women in Nigeria use plant preparations to facilitate childbirth and to reduce associated pain. The rationale for this is not known and requires pharmacological validation. Aim of study Obtain primary information regarding the traditional use of plants and analyze their uterine contractility at cellular level. Materials and methods Semi-structured, open interviews using questionnaires of traditional healthcare professionals and other informants triggered the collection and identification of medicinal plant species. The relative traditional importance of each medicinal plant was determined by its use-mention index. Extracts of these plants were analyzed for their uterotonic properties on an in vitro human uterine cell collagen model. Result The plants Calotropis procera, Commelina africana, Duranta repens, Hyptis suaveolens, Ocimum gratissimum, Saba comorensis, Sclerocarya birrea, Sida corymbosa and Vernonia amygdalina were documented and characterized. Aqueous extracts from these nine plants induced significant sustained increases in human myometrial smooth muscle cell contractility, with varying efficiencies, depending upon time and dose of exposure. Conclusion The folkloric use of several plant species during childbirth in Nigeria has been validated. Seven plants were for the first time characterized to have contractile properties on uterine myometrial cells. The results serve as ideal starting points in the search for safe, longer lasting, effective and tolerable uterotonic drug leads.


Biochemical Society Transactions | 2013

Insights into the molecular evolution of oxytocin receptor ligand binding.

Johannes Koehbach; Thomas Stockner; Christian Bergmayr; Markus Muttenthaler; Christian W. Gruber

The design and development of selective ligands for the human OT (oxytocin) and AVP (arginine vasopressin) receptors is a big challenge since the different receptor subtypes and their native peptide ligands display great similarity. Detailed understanding of the mechanism of OTs interaction with its receptor is important and may assist in the ligand- or structure-based design of selective and potent ligands. In the present article, we compared 69 OT- and OT-like receptor sequences with regards to their molecular evolution and diversity, utilized an in silico approach to map the common ligand interaction sites of recently published G-protein-coupled receptor structures to a model of the human OTR (OT receptor) and compared these interacting residues within a selection of different OTR sequences. Our analysis suggests the existence of a binding site for OT peptides within the common transmembrane core region of the receptor, but it appears extremely difficult to identify receptor or ligand residues that could explain the selectivity of OT to its receptors. We remain confident that the presented evolutionary overview and modelling approach will aid interpretation of forthcoming OTR crystal structures.


Journal of Proteome Research | 2015

Peptidomics of Circular Cysteine-Rich Plant Peptides: Analysis of the Diversity of Cyclotides from Viola tricolor by Transcriptome and Proteome Mining

Roland Hellinger; Johannes Koehbach; Douglas E. Soltis; Eric J. Carpenter; Gane Ka-Shu Wong; Christian W. Gruber

Cyclotides are plant-derived mini proteins. They are genetically encoded as precursor proteins that become post-translationally modified to yield circular cystine-knotted molecules. Because of this structural topology cyclotides resist enzymatic degradation in biological fluids, and hence they are considered as promising lead molecules for pharmaceutical applications. Despite ongoing efforts to discover novel cyclotides and analyze their biodiversity, it is not clear how many individual peptides a single plant specimen can express. Therefore, we investigated the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide precursor architecture and processing sites important for biosynthesis of mature peptides. The cyclotide peptidome was explored by mass spectrometry and bottom-up proteomics using the extracted peptide sequences as queries for database searching. In total 164 cyclotides were discovered by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source to as many as 150 000 individual cyclotides. Encompassing the diversity of V. tricolor as a combinatorial library of bioactive peptides, this commercially available medicinal herb may be a suitable starting point for future bioactivity-guided screening studies.


Journal of Natural Products | 2015

Inhibition of human prolyl oligopeptidase activity by the cyclotide psysol 2 isolated from Psychotria solitudinum

Roland Hellinger; Johannes Koehbach; Albert Puigpinós; Richard J. Clark; Teresa Tarragó; Ernest Giralt; Christian W. Gruber

Cyclotides are head-to-tail cyclized peptides comprising a stabilizing cystine-knot motif. To date, they are well known for their diverse bioactivities such as anti-HIV and immunosuppressive properties. Yet little is known about specific molecular mechanisms, in particular the interaction of cyclotides with cellular protein targets. Native and synthetic cyclotide-like peptides from Momordica plants are potent and selective inhibitors of different serine-type proteinases such as trypsin, chymotrypsin, matriptase, and tryptase-beta. This study describes the bioactivity-guided isolation of a cyclotide from Psychotria solitudinum as an inhibitor of another serine-type protease, namely, the human prolyl oligopeptidase (POP). Analysis of the inhibitory potency of Psychotria extracts and subsequent fractionation by liquid chromatography yielded the isolated peptide psysol 2 (1), which exhibited an IC50 of 25 μM. In addition the prototypical cyclotide kalata B1 inhibited POP activity with an IC50 of 5.6 μM. The inhibitory activity appeared to be selective for POP, since neither psysol 2 nor kalata B1 were able to inhibit the proteolytic activity of trypsin or chymotrypsin. The enzyme POP is well known for its role in memory and learning processes, and it is currently being considered as a promising therapeutic target for the cognitive deficits associated with several psychiatric and neurodegenerative diseases, such as schizophrenia and Parkinson’s disease. In the context of discovery and development of POP inhibitors with beneficial ADME properties, cyclotides may be suitable starting points considering their stability in biological fluids and possible oral bioavailability.


Journal of Proteome Research | 2016

MALDI TOF/TOF-based approach for the identification of d-amino acids in biologically active peptides and proteins

Johannes Koehbach; Christian W. Gruber; Christian F. W. Becker; David P. Kreil; Alexander Jilek

Several biologically active peptides contain a d- amino acid in a well-defined position, which is position 2 in all peptide epimers isolated to date from vertebrates and also some from invertebrates. The detection of such D- residues by standard analytical techniques is challenging. In tandem mass spectrometric (MS) analysis, although fragment masses are the same for all stereoisomers, peak intensities are known to depend on chirality. Here, we observe that the effect of a d- amino acid in the second N-terminal position on the fragmentation pattern in matrix assisted laser desorption time-of-flight spectrometry (MALDI-TOF/TOF MS) strongly depends on the peptide sequence. Stereosensitive fragmentation (SF) is correlated to a neighborhood effect, but the d- residue also exerts an overall effect influencing distant bonds. In a fingerprint analysis, multiple peaks can thus serve to identify the chirality of a sample in short time and potentially high throughput. Problematic variations between individual spots could be successfully suppressed by cospotting deuterated analogues of the epimers. By identifying the [d-Leu2] isomer of the predicted peptide GH-2 (gene derived bombininH) in skin secretions of the toad Bombina orientalis, we demonstrated the analytical power of SF-MALDI-TOF/TOF measurements. In conclusion, SF-MALDI-TOF/TOF MS combines high sensitivity, versatility, and the ability to complement other methods.

Collaboration


Dive into the Johannes Koehbach's collaboration.

Top Co-Authors

Avatar

Christian W. Gruber

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Freissmuth

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Margaret O'Brien

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry J. Smith

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Roland Hellinger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

David J. Craik

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Alfred F. Attah

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Marion Miazzo

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge