Johannes Krupp
Ipsen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Krupp.
Nature Communications | 2017
Liang Tao; Lisheng Peng; Ronnie P.-A. Berntsson; Sai Man Liu; SunHyun Park; Feifan Yu; Christopher Boone; Shilpa Palan; Matthew Beard; Pierre-Etienne Chabrier; Pål Stenmark; Johannes Krupp; Min Dong
Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B’s therapeutic efficacy and reduce adverse effects. Here we utilized the bacterial adenylate cyclase two-hybrid method and carried out a saturation mutagenesis screen in the Syt II-binding pocket of botulinum neurotoxin B. The screen identifies E1191 as a key residue: replacing it with M/C/V/Q enhances botulinum neurotoxin B binding to human synaptotagmin II. Adding S1199Y/W or W1178Q as a secondary mutation further increases binding affinity. Mutant botulinum neurotoxin B containing E1191M/S1199Y exhibits ~11-fold higher efficacy in blocking neurotransmission than wild-type botulinum neurotoxin B in neurons expressing human synaptotagmin II, demonstrating that enhancing receptor binding increases the overall efficacy at functional levels. The engineered botulinum neurotoxin B provides a platform to develop therapeutic toxins with improved efficacy.Humans are less sensitive to the therapeutic effects of botulinum neurotoxin B (BoNT/B) than the animal models it is tested on due to differences between the human and the mouse receptors. Here, the authors engineer BoNT/B to improve its affinity to human receptors and enhance its therapeutic efficacy.
Toxins | 2018
Elena Fonfria; Jacquie Maignel; Stephane Lezmi; Vincent Martin; Andrew Splevins; Saif Shubber; Mikhail Kalinichev; Keith Foster; Philippe Picaut; Johannes Krupp
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Pharmacology Research & Perspectives | 2017
Jacquie Maignel-Ludop; Marion Huchet; Johannes Krupp
To address the scarcity of direct comparison of botulinum neurotoxin serotypes activity on smooth versus striatal muscle, we have studied the action of BoNT/A1 and BoNT/B1 on ex vivo preparations of both muscle types. We have set up and characterized a model of neurogenic contractions in the isolated mouse bladder, and used this model to explore the effects of the two serotypes on contractions evoked by electrical field stimulation. Both toxins were also tested in the mouse phrenic nerve hemidiaphragm assay, to compare their potency in smooth versus striated muscle. The characterization of the model of neurogenic contractions in the isolated mouse bladder indicates that about half of the activity is driven by purinergic signaling, and about half by cholinergic signaling. Furthermore, we find that BoNT/B1 is more potent than BoNT/A1 in inhibiting activity in the mouse detrusor smooth muscle preparation, but that both toxins have comparable potency on the striated muscle activity of the phrenic nerve hemidiaphragm model. We also show that these findings are mouse strain independent. In conclusion, the established mouse bladder detrusor smooth muscle model is able to discriminate between different botulinum neurotoxin serotypes and could be a useful preclinical tool to explore the pathophysiology of bladder overactivity, as well as the effects of new therapeutic candidates. It is interesting to note that the high proportion of purinergic transmission driving detrusor contractions in this model is similar to that seen in neurodetrusor overactivity disease, making this model relevant with regard to pathophysiological interest.
PLOS ONE | 2017
Mark A. Elliott; Jacquie Maignel; Sai Man Liu; Christine Favre-Guilmard; Imran Mir; Paul Farrow; Fraser Hornby; Sandra Marlin; Shilpa Palan; Matthew Beard; Johannes Krupp
Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli–one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3–4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.
Toxins | 2018
Elena Fonfria; Mark A. Elliott; Matthew Beard; John Chaddock; Johannes Krupp
Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.
Toxicon | 2016
Jacquie Maignel-Ludop; Bernadette Pignol; Diane Gorny; Rana Assaly; Delphine Behr-Roussel; Johannes Krupp
Toxicon | 2016
Elena Fonfria; Sarah Donald; Verity Cadd; Johannes Krupp
Toxicon | 2016
Mark Elliott; Paul Farrow; Christine Favre-Guilmard; Fraser Hornby; Sai Man Liu; Jacquie Maignel-Ludop; Sandra Marlin; Imran Mir; Shilpa Palan; Mikhail Kalinichev; Matthew Beard; Johannes Krupp
Toxicon | 2015
Fraser Hornby; Diana Hedley; Elena Fonfria; Johannes Krupp
Toxicon | 2015
Elena Fonfria; Verity Cadd; Agnieszka Lewandowska; Marion Huchet; Mark Christopher Elliott; Johannes Krupp