Johannes Leveling
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Leveling.
workshop on statistical machine translation | 2014
Ondrej Bojar; Christian Buck; Christian Federmann; Barry Haddow; Philipp Koehn; Johannes Leveling; Christof Monz; Pavel Pecina; Matt Post; Herve Saint-Amand; Radu Soricut; Lucia Specia; Aleš Tamchyna
This paper presents the results of the WMT14 shared tasks, which included a standard news translation task, a separate medical translation task, a task for run-time estimation of machine translation quality, and a metrics task. This year, 143 machine translation systems from 23 institutions were submitted to the ten translation directions in the standard translation task. An additional 6 anonymized systems were included, and were then evaluated both automatically and manually. The quality estimation task had four subtasks, with a total of 10 teams, submitting 57 entries
conference on information and knowledge management | 2011
Debasis Ganguly; Johannes Leveling; Walid Magdy; Gareth J. F. Jones
Queries in patent prior art search are full patent applications and much longer than standard ad hoc search and web search topics. Standard information retrieval (IR) techniques are not entirely effective for patent prior art search because of ambiguous terms in these massive queries. Reducing patent queries by extracting key terms has been shown to be ineffective mainly because it is not clear what the focus of the query is. An optimal query reduction algorithm must thus seek to retain the useful terms for retrieval favouring recall of relevant patents, but remove terms which impair IR effectiveness. We propose a new query reduction technique decomposing a patent application into constituent text segments and computing the Language Modeling (LM) similarities by calculating the probability of generating each segment from the top ranked documents. We reduce a patent query by removing the least similar segments from the query, hypothesising that removal of these segments can increase the precision of retrieval, while still retaining the useful context to achieve high recall. Experiments on the patent prior art search collection CLEF-IP 2010 show that the proposed method outperforms standard pseudo-relevance feedback (PRF) and a naive method of query reduction based on removal of unit frequency terms (UFTs).
International Journal of Geographical Information Science | 2008
Johannes Leveling; Sven Hartrumpf
Metonymically used location names (toponyms) refer to other, related entities and thus possess a meaning different from their literal, geographic sense. Metonymic uses are to be treated differently to improve the performance of geographic information retrieval (GIR). Statistics on toponym senses show that 75.06% of all location names are used in their literal sense, 17.05% are used metonymically, and 7.89% have a mixed sense. This article presents a method for disambiguating location names in texts between literal and metonymic senses, based on shallow features. The evaluation of this method is two‐fold. First, we use a memory‐based learner (TiMBL) to train a classifier and determine standard evaluation measures such as F‐score and accuracy. The classifier achieved an F‐score of 0.842 and an accuracy of 0.846 for identifying toponym senses in a subset of the CoNLL (Conference on Natural Language Learning) data. Second, we perform retrieval experiments based on the GeoCLEF data (newspaper article corpus and queries) from 2005 and 2006. We compare searching location names in a database index containing both their literal and metonymic senses with searching in an index containing their literal senses only. Evaluation results indicate that removing metonymic senses from the index yields a higher mean average precision (MAP) for GIR. In total, we observed a significant gain in MAP: an increase from 0.0704 to 0.0715 MAP for the GeoCLEF 2005 data, and an increase from 0.1944 to 0.2100 MAP for the GeoCLEF 2006 data.
Artificial Intelligence in Medicine | 2014
Pavel Pecina; Ondřej Dušek; Lorraine Goeuriot; Jan Hajic; Jaroslava Hlaváčová; Gareth J. F. Jones; Liadh Kelly; Johannes Leveling; David Mareček; Michal Novák; Martin Popel; Rudolf Rosa; Aleš Tamchyna; Zdeňka Urešová
OBJECTIVE We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR. METHODS AND DATA Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets. RESULTS The search query translation results achieved in our experiments are outstanding - our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results. CONCLUSIONS Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance - better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions.
cross language evaluation forum | 2009
Walid Magdy; Johannes Leveling; Gareth J. F. Jones
This paper presents the experiments and results of DCU in CLEF-IP 2009. Our work applied standard information retrieval (IR) techniques to patent search. Different experiments tested various methods for the patent retrieval, including query formulation, structured index, weighted fields, document filtering, and blind relevance feedback. Some methods did not show expected good retrieval effectiveness such as blind relevance feedback, other experiments showed acceptable performance. Query formulation was the key to achieving better retrieval effectiveness, and this was performed through assigning higher weights to certain document fields. Further experiments showed that for longer queries, better results are achieved but at the expense of additional computations. For the best runs, the retrieval effectiveness is still lower than for IR applications for other domains, illustrating the difficulty of patent search. The official results have shown that among fifteen participants we achieved the seventh and the fourth ranks from the mean average precision (MAP) and recall point of view, respectively.
cross language evaluation forum | 2005
Johannes Leveling; Sven Hartrumpf; Dirk Veiel
This paper describes our work for the participation at the GeoCLEF task of CLEF 2005. We employ multilayered extended semantic networks for the representation of background knowledge, queries, and documents for geographic information retrieval (GIR). In our approach, geographic concepts from the query network are expanded with concepts which are semantically connected via topological, directional, and proximity relations. We started with an existing geographic knowledge base represented as a semantic network and expanded it with concepts automatically extracted from the GEOnet Names Server. Several experiments for GIR on German documents have been performed: a baseline corresponding to a traditional information retrieval approach; a variant expanding thematic, temporal, and geographic descriptors from the semantic network representation of the query; and an adaptation of a question answering (QA) algorithm based on semantic networks. The second experiment is based on a representation of the natural language description of a topic as a semantic network, which is achieved by a deep linguistic analysis. The semantic network is transformed into an intermediate representation of a database query explicitly representing thematic, temporal, and local restrictions. This experiment showed the best performance with respect to mean average precision: 10.53% using the topic title and description. The third experiment, adapting a QA algorithm, uses a modified version of the QA system InSicht. The system matches deep semantic representations of queries or their equivalent or similar variants to semantic networks for document sentences.
cross language evaluation forum | 2009
M. Rami Ghorab; Johannes Leveling; Dong Zhou; Gareth J. F. Jones; Vincent Wade
The LADS (Log Analysis for Digital Societies) task at CLEF aims at investigating user actions in a multilingual setting. We carried out an analysis of search logs with the objectives of investigating how users from different linguistic or cultural backgrounds behave in search, and how the discovery of patterns in user actions could be used for community identification. The findings confirm that users from a different background behave differently, and that there are identifiable patterns in the user actions. The findings suggest that there is scope for further investigation of how search logs can be exploited to personalise and improve cross-language search as well as improve the TEL search system.
cross language evaluation forum | 2008
Sven Hartrumpf; Ingo Glöckner; Johannes Leveling
The German question answering (QA) system IRSAW (formerly: InSicht) participated in QA@CLEF for the fifth time. IRSAW was introduced in 2007 by integrating the deep answer producer InSicht, several shallow answer producers, and a logical validator. InSicht builds on a deep QA approach: it transforms documents to semantic representations using a parser, draws inferences on semantic representations with rules, and matches semantic representations derived from questions and documents. InSicht was improved for QA@CLEF 2008 mainly in the following two areas. The coreference resolver was trained on question series instead of newspaper texts in order to be better applicable for follow-up questions. Questions are decomposed by several methods on the level of semantic representations. On the shallow processing side, the number of answer producers was increased from two to four by adding FACT, a fact index, and SHASE, a shallow semantic network matcher. The answer validator introduced in 2007 was replaced by the faster RAVE validator designed for logic-based answer validation under time constraints. Using RAVE for merging the results of the answer producers, monolingual German runs and bilingual runs with source language English and Spanish were produced by applying the machine translation web service Promt. An error analysis shows the main problems for the precision-oriented deep answer producer InSicht and the potential offered by the recalloriented shallow answer producers.
cross language evaluation forum | 2004
Johannes Leveling; Sven Hartrumpf
This paper describes the second participation of the University of Hagen in the German Indexing and Retrieval Test (GIRT) task of the CLEF 2004 evaluation campaign with both monolingual and bilingual information retrieval experiments. For monolingual experiments with the German document collection, the focus is on applying and comparing three indexing methods targeting word forms, disambiguated concepts, and extended semantic networks. The bilingual experiments for retrieving English documents for German topics rely on translating and expanding query terms based on ranking semantically related English terms for a German concept. English translations are compiled from heterogeneous resources, including multilingual lexicons such as EuroWordNet and dictionaries available online.
patent information retrieval | 2011
Debasis Ganguly; Johannes Leveling; Gareth J. F. Jones
Previous research in patent search has shown that reducing queries by extracting a few key terms is ineffective primarily because of the vocabulary mismatch between patent applications used as queries and existing patent documents. This finding has led to the use of full patent applications as queries in patent prior art search. In addition, standard information retrieval (IR) techniques such as query expansion (QE) do not work effectively with patent queries, principally because of the presence of noise terms in the massive queries. In this study, we take a new approach to QE for patent search. Text segmentation is used to decompose a patent query into self coherent sub-topic blocks. Each of these much shorted sub-topic blocks which is representative of a specific aspect or facet of the invention, is then used as a query to retrieve documents. Documents retrieved using the different resulting sub-queries or query streams are interleaved to construct a final ranked list. This technique can exploit the potential benefit of QE since the segmented queries are generally more focused and less ambiguous than the full patent query. Experiments on the CLEF-2010 IP prior-art search task show that the proposed method outperforms the retrieval effectiveness achieved when using a single full patent application text as the query, and also demonstrates the potential benefits of QE to alleviate the vocabulary mismatch problem in patent search.