Johannes M. Richter
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes M. Richter.
Science | 2016
Luis M. Pazos-Outón; M. Szumilo; Robin Lamboll; Johannes M. Richter; Micaela Crespo-Quesada; Mojtaba Abdi-Jalebi; Harry J. Beeson; M. Vru ini; Mejd Alsari; Henry J. Snaith; Bruno Ehrler; Richard H. Friend; Felix Deschler
Perovskite solar cells recycle photons Inorganic-organic perovskite solar cells are very efficient in part because the charge carriers exhibit very long path lengths. Pazos-Outón et al. show that photon recycling, as seen previously in highly efficient gallium arsenide solar cells, contributes to this effect (see the Perspective by Yablonovitch). In most solar cells, the recombination of photogenerated charge carriers (electrons and holes) wastes all of the energy. In these lead tri-iodide cells, recombination emits a photon that can be reabsorbed and create more charge carriers. Science, this issue p. 1430; see also p. 1401 Exceptionally long charge-extraction lengths are enabled by multiple cycles of photon absorption and emission. [Also see Perspective by Yablonovitch] Lead-halide perovskites have emerged as high-performance photovoltaic materials. We mapped the propagation of photogenerated luminescence and charges from a local photoexcitation spot in thin films of lead tri-iodide perovskites. We observed light emission at distances of ≥50 micrometers and found that the peak of the internal photon spectrum red-shifts from 765 to ≥800 nanometers. We used a lateral-contact solar cell with selective electron- and hole-collecting contacts and observed that charge extraction for photoexcitation >50 micrometers away from the contacts arose from repeated recycling between photons and electron-hole pairs. Thus, energy transport is not limited by diffusive charge transport but can occur over long distances through multiple absorption-diffusion-emission events. This process creates high excitation densities within the perovskite layer and allows high open-circuit voltages.
Journal of the American Chemical Society | 2016
Tom C. Jellicoe; Johannes M. Richter; Hugh Glass; Maxim Tabachnyk; Ryan Brady; Sian̂ E. Dutton; Akshay Rao; Richard H. Friend; Dan Credgington; Neil C. Greenham; Marcus L. Böhm
Metal halide perovskite crystal structures have emerged as a class of optoelectronic materials, which combine the ease of solution processability with excellent optical absorption and emission qualities. Restricting the physical dimensions of the perovskite crystallites to a few nanometers can also unlock spatial confinement effects, which allow large spectral tunability and high luminescence quantum yields at low excitation densities. However, the most promising perovskite structures rely on lead as a cationic species, thereby hindering commercial application. The replacement of lead with nontoxic alternatives such as tin has been demonstrated in bulk films, but not in spatially confined nanocrystals. Here, we synthesize CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals and provide evidence of their spectral tunability through both quantum confinement effects and control of the anionic composition. We show that luminescence from Sn-based perovskite nanocrystals occurs on pico- to nanosecond time scales via two spectrally distinct radiative decay processes, which we assign to band-to-band emission and radiative recombination at shallow intrinsic defect sites.
Nature Communications | 2016
Johannes M. Richter; Mojtaba Abdi-Jalebi; Aditya Sadhanala; Maxim Tabachnyk; Jasmine P. H. Rivett; Luis M. Pazos-Outón; Karl C. Gödel; Michael Price; Felix Deschler; Richard H. Friend
In lead halide perovskite solar cells, there is at least one recycling event of electron–hole pair to photon to electron–hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells.
Nature | 2018
Mojtaba Abdi-Jalebi; Zahra Andaji-Garmaroudi; Stefania Cacovich; Camille Stavrakas; Bertrand Philippe; Johannes M. Richter; Mejd Alsari; Edward P. Booker; Eline M. Hutter; Andrew J. Pearson; Samuele Lilliu; Tom J. Savenije; Håkan Rensmo; Giorgio Divitini; Caterina Ducati; Richard H. Friend; Samuel D. Stranks
Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
Science | 2017
Dawei Di; Alexander S. Romanov; Le Yang; Johannes M. Richter; Jasmine P. H. Rivett; Saul T. E. Jones; Tudor H. Thomas; Mojtaba Abdi Jalebi; Richard H. Friend; Mikko Linnolahti; Manfred Bochmann; Dan Credgington
Adding a twist for enhanced performance The efficiency of organic light-emitting diodes (OLEDs) is fundamentally governed by the ratio of emissive singlet to dark triplet excitons that are formed from spin-polarized electron and hole currents within the material. Typically, this has set an upper limit of 25% internal quantum efficiency for OLEDs. Di et al. manipulated the ratio of spin states through a modification of process chemistry. They introduced a rotation of the molecular structure, which inverted the spin-state energetics and enhanced OLED performance. Science, this issue p. 159 Spin-state inversion via intramolecular rotation can enhance the performance of solution-processed organic light-emitting diodes. Organic light-emitting diodes (OLEDs) promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 nanoseconds at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, so that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of the donor and acceptor moieties about the bridge. Unlike other systems with low exchange energy, substantial oscillator strength is sustained at the singlet-triplet degeneracy point.
Advanced Materials | 2017
Dawei Di; Le Yang; Johannes M. Richter; Lorenzo Meraldi; Rashid Altamimi; Ahmed Y. Alyamani; Dan Credgington; Kevin P. Musselman; Judith L. MacManus-Driscoll; Richard H. Friend
Solution-processed polymer organic light-emitting diodes (OLEDs) doped with triplet-triplet annihilation (TTA)-upconversion molecules, including 9,10-diphenylanthracene, perylene, rubrene and TIPS-pentacene, are reported. The fraction of triplet-generated electroluminescence approaches the theoretical limit. Record-high efficiencies in solution-processed OLEDs based on these materials are achieved. Unprecedented solid-state TTA-upconversion quantum yield of 23% (TTA-upconversion reaction efficiency of 70%) at electrical excitation well below one-sun equivalent is observed.
Nature Communications | 2017
Johannes M. Richter; Federico Branchi; Franco Valduga de Almeida Camargo; Baodan Zhao; Richard H. Friend; Giulio Cerullo; Felix Deschler
In band-like semiconductors, charge carriers form a thermal energy distribution rapidly after optical excitation. In hybrid perovskites, the cooling of such thermal carrier distributions occurs on timescales of about 300 fs via carrier-phonon scattering. However, the initial build-up of the thermal distribution proved difficult to resolve with pump–probe techniques due to the requirement of high resolution, both in time and pump energy. Here, we use two-dimensional electronic spectroscopy with sub-10 fs resolution to directly observe the carrier interactions that lead to a thermal carrier distribution. We find that thermalization occurs dominantly via carrier-carrier scattering under the investigated fluences and report the dependence of carrier scattering rates on excess energy and carrier density. We extract characteristic carrier thermalization times from below 10 to 85 fs. These values allow for mobilities of 500 cm2 V−1 s−1 at carrier densities lower than 2 × 1019 cm−3 and limit the time for carrier extraction in hot carrier solar cells.Carrier-carrier scattering rates determine the fundamental limits of carrier transport and electronic coherence. Using two-dimensional electronic spectroscopy with sub-10 fs resolution, Richter and Branchi et al. extract carrier thermalization times of 10 to 85 fs in hybrid perovskites.
Journal of the American Chemical Society | 2017
Andrew J. Musser; Prakash P. Neelakandan; Johannes M. Richter; Hirotaka Mori; Richard H. Friend; Jonathan R. Nitschke
We have prepared a series of MII4L6 tetrahedral cages containing one or the other of two distinct BODIPY moieties, as well as mixed cages that contain both BODIPY chromophores. The photophysical properties of these cages and their fullerene-encapsulated adducts were studied in depth. Upon cage formation, the charge-transfer character exhibited by the bis(aminophenyl)-BODIPY subcomponents disappeared. Strong excitonic interactions were instead observed between at least two BODIPY chromophores along the edges of the cages, arising from the electronic delocalization through the metal centers. This excited-state delocalization contrasts with previously reported cages. All cages exhibited the same progression from an initial bright singlet state (species I) to a delocalized dark state (species II), driven by interactions between the transition dipoles of the ligands, and subsequently into geometrically relaxed species III. In the case of cages loaded with C60 or C70 fullerenes, ultrafast host-to-guest electron transfer was observed to compete with the excitonic interactions, short-circuiting the I → II → III sequence.
Journal of Physical Chemistry C | 2017
Nathaniel J. L. K. Davis; Francisco de la Peña; Maxim Tabachnyk; Johannes M. Richter; Robin Lamboll; Edward P. Booker; Florencia Wisnivesky Rocca Rivarola; James T. Griffiths; Caterina Ducati; S. Matthew Menke; Felix Deschler; Neil C. Greenham
Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.
Journal of the American Chemical Society | 2017
Edward P. Booker; Tudor H. Thomas; Claudio Quarti; Michael Stanton; Cameron D Dashwood; Alexander Gillett; Johannes M. Richter; Andrew J. Pearson; Nathaniel J. L. K. Davis; Henning Sirringhaus; Michael Price; Neil C. Greenham; David Beljonne; Sian Elizabeth Dutton; Felix Deschler
We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C6H16N)2PbI4, and dodecylammonium (DA) lead iodide, (C12H28N)2PbI4, by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA2PbI4. DFT simulations of the HA2PbI4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.