Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Madlung is active.

Publication


Featured researches published by Johannes Madlung.


The Plant Cell | 2008

An Exocyst Complex Functions in Plant Cell Growth in Arabidopsis and Tobacco

Michal Hála; Rex Cole; Lukáš Synek; Edita Drdová; Tamara Pečenková; Alfred Nordheim; Tobias Lamkemeyer; Johannes Madlung; Frank Hochholdinger; John E. Fowler; Viktor Žárský

The exocyst, an octameric tethering complex and effector of Rho and Rab GTPases, facilitates polarized secretion in yeast and animals. Recent evidence implicates three plant homologs of exocyst subunits (SEC3, SEC8, and EXO70A1) in plant cell morphogenesis. Here, we provide genetic, cell biological, and biochemical evidence that these and other predicted subunits function together in vivo in Arabidopsis thaliana. Double mutants in exocyst subunits (sec5 exo70A1 and sec8 exo70A1) show a synergistic defect in etiolated hypocotyl elongation. Mutants in exocyst subunits SEC5, SEC6, SEC8, and SEC15a show defective pollen germination and pollen tube growth phenotypes. Using antibodies directed against SEC6, SEC8, and EXO70A1, we demonstrate colocalization of these proteins at the apex of growing tobacco pollen tubes. The SEC3, SEC5, SEC6, SEC8, SEC10, SEC15a, and EXO70 subunits copurify in a high molecular mass fraction of 900 kD after chromatographic fractionation of an Arabidopsis cell suspension extract. Blue native electrophoresis confirmed the presence of SEC3, SEC6, SEC8, and EXO70 in high molecular mass complexes. Finally, use of the yeast two-hybrid system revealed interaction of Arabidopsis SEC3a with EXO70A1, SEC10 with SEC15b, and SEC6 with SEC8. We conclude that the exocyst functions as a complex in plant cells, where it plays important roles in morphogenesis.


Journal of Medical Microbiology | 2009

Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany.

Sabine Gröbner; Dirk Linke; Wolfgang Schütz; Claudia Fladerer; Johannes Madlung; Ingo B. Autenrieth; Wolfgang Witte; Yvonne Pfeifer

The spread of Gram-negative bacteria with plasmid-borne extended-spectrum beta-lactamases (ESBLs) has become a worldwide problem. This study analysed a total of 366 ESBL-producing Enterobacteriaceae strains isolated from non-selected patient specimens at the university hospital of Tübingen in the period January 2003 to December 2007. Although the overall ESBL rate was comparatively low (1.6 %), the percentages of ESBL-producing Enterobacter spp. and Escherichia coli increased from 0.8 and 0.5 %, respectively, in 2003 to 4.6 and 3.8 % in 2007. In particular, the emergence was observed of one carbapenem-resistant ESBL-producing E. coli isolate and five carbapenem-non-susceptible ESBL-positive Klebsiella pneumoniae isolates, in two of which carbapenem resistance development was documented in vivo under a meropenem-containing antibiotic regime. The possible underlying mechanism for this carbapenem resistance in three of the K. pneumoniae isolates was loss of the Klebsiella porin channel protein OmpK36 as shown by PCR analysis. The remaining two K. pneumoniae isolates exhibited increased expression of a tripartite AcrAB-TolC efflux pump as demonstrated by SDS-PAGE and mass spectrometry analysis of bacterial outer-membrane extracts, which, in addition to other unknown mechanisms, may contribute towards increasing the carbapenem MIC values further. Carbapenem-non-susceptible ESBL isolates may pose a new problem in the future due to possible outbreak situations and limited antibiotic treatment options. Therefore, a systematic exploration of intestinal colonization with ESBL isolates should be reconsidered, at least for haemato-oncological departments from where four of the five carbapenem-non-susceptible ESBL isolates originated.


Plant Physiology | 2007

Transcriptomic and Proteomic Analyses of Pericycle Cells of the Maize Primary Root

Diana Dembinsky; Katrin Woll; Muhammad Saleem; Yan Liu; Yan Fu; Lisa A. Borsuk; Tobias Lamkemeyer; Claudia Fladerer; Johannes Madlung; Brad Barbazuk; Alfred Nordheim; Dan Nettleton; Frank Hochholdinger

Each plant cell type expresses a unique transcriptome and proteome at different stages of differentiation dependent on its developmental fate. This study compared gene expression and protein accumulation in cell-cycle-competent primary root pericycle cells of maize (Zea mays) prior to their first division and lateral root initiation. These are the only root cells that maintain the competence to divide after they leave the meristematic zone. Pericycle cells of the inbred line B73 were isolated via laser capture microdissection. Microarray experiments identified 32 genes preferentially expressed in pericycle versus all other root cells that have left the apical meristem; selective subtractive hybridization identified seven genes preferentially expressed in pericycle versus central cylinder cells of the same root region. Transcription and protein synthesis represented the most abundant functional categories among these pericycle-specific genes. Moreover, 701 expressed sequence tags (ESTs) were generated from pericycle and central cylinder cells. Among those, transcripts related to protein synthesis and cell fate were significantly enriched in pericycle versus nonpericycle cells. In addition, 77 EST clusters not previously identified in maize ESTs or genomic databases were identified. Finally, among the most abundant soluble pericycle proteins separated via two-dimensional electrophoresis, 20 proteins were identified via electrospray ionization-tandem mass spectrometry, thus defining a reference dataset of the maize pericycle proteome. Among those, two proteins were preferentially expressed in the pericycle. In summary, these pericycle-specific gene expression experiments define the distinct molecular events during the specification of cell-cycle-competent pericycle cells prior to their first division and demonstrate that pericycle specification and lateral root initiation might be controlled by a different set of genes.


Planta | 1992

Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures

Jörg-Peter Schnitzler; Johannes Madlung; Anette Rose; Hanns Ulrich Seitz

Carrot (Daucus carota L.) cells respond to treatment with fungal elicitors by synthesizing wallbound p-hydroxybenzoic acid (p-HBA). The biosynthetic pathway to p-HBA is still hypothetical. Tracer experiments with l-phenylalanine indicate the involvement of the general phenylpropanoid pathway. 3,4 (Methylenedioxy) innamic acid, an inhibitor of hydrocycinnamate CoA ligase, inhibits the accumulation of anthocyanins in carrot, while it does not interfere with p-HBA synthesis. Thus p-HBA biosynthesis does not appear to involve CoA thioesters. In the present report the sequence of enzymic reactions leading to p-HBA was investigated in vitro using protein preparations from cells treated with a fungal elicitor from Pythium aphanidermatum (Edson) Fitzp. The side-chain degradation from p-coumaric acid to p-HBA is not analogous to the β-oxidation of fatty acids and involves p-hydroxybenzaldehyde as an intermediate. The final step from p-hydroxybenzaldehyde to p-HBA is catalyzed by an NAD-dependent p-hydroxybenzaldehyde dehydrogenase (EC 1.2.1.-). This reaction was characterized with regard to cofactor requirements, pH and temperature optima. The in-vitro formation of p-HBA from p-coumaric acid and the activity of the hydroxybenzaldehyde dehydrogenase are moderately elicitor-induced but to a much lesser extent than phenylalanine ammonialyase, which is the starting enzyme of the general phenylpropanoid pathway.


Pflügers Archiv: European Journal of Physiology | 1998

Cellular taurine release triggered by stimulation of the Fas(CD95) receptor in Jurkat lymphocytes

Florian Lang; Johannes Madlung; Anne C. Uhlemann; Teut Risler; Erich Gulbins

Abstract One of the hallmarks of apoptosis is cell shrinkage which appears to be important for cell death. The mechanisms mediating cell volume decrease have, however, not been addressed. Mechanisms employed by swollen cells to decrease their cell volume include activation of ion transport pathways, such as ion channels and KCl cotransport, and release of cellular osmolytes, such as taurine, sorbitol, betaine and inositol. The present study has been performed to test for release of taurine. To this end Jurkat human T-lymphocytes were loaded with [3H]taurine and apoptotic cell death induced by triggering the Fas(CD95) receptor with monoclonal crosslinking antibody. Triggering the Fas(CD95) receptor led to a release of 60±5% of cellular taurine within 90 min. The release did not occur prior to 45 min. The release coincided with cell shrinkage as evidenced from forward scatter in FACS analysis and preceeded DNA fragmentation according to propidium iodide staining. The delay of taurine release was not influenced by exchange of medium and thus was not due to extracellular accumulation of a stimulator. The Fas(CD95)-induced taurine release, cell shrinkage and DNA fragmentation were blunted by lowering of ambient temperature to 23°C. Following pretreatment of cells with Fas(CD95) antibody at 23°C rewarming led to rapid taurine release, cell shrinkage and DNA fragmentation, indicating that the temperature-sensitive step is distal to the mechanisms accounting for the delay. Osmotic cell swelling led to an immediate release of taurine. In conclusion, Fas(CD95) triggering leads to delayed taurine release through a temperature-sensitive mechanism.


Planta | 1998

Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell cultures in response to treatment with ultraviolet light and fungal elicitors

Werner E. Gläßgen; Anette Rose; Johannes Madlung; Wolfgang Koch; Johannes Gleitz; Hanns Ulrich Seitz

Abstract. The accumulation of anthocyanins in cell cultures of Daucus carota L. and the enzymes involved in their biosynthesis were investigated under growth in the dark, continuous irradiation with UV light, incubation with elicitors from Pythium aphanidermatum, and elicitor treatment of UV-irradiated cells. Upon UV irradiation, anthocyanin accumulation was strongly enhanced, and the enzymes of the phenylpropanoid and flavonoid pathways, including the “late” enzymes cyanidin galac-tosyltransferase, cyanidin galactoside xylosyltransferase, cyanidin triglycoside sinapoyltransferase and sinapic acid glucosyltransferase, all showed transient increases in their activities. The time courses of the enzyme activities exhibited successive maxima with an ordered sequence corresponding to their position in the biosynthetic pathway, suggesting a coordinated induction of the entire set of enzymes. The key enzymes phenylalanine ammonia-lyase and chalcone synthase are regulated on a transcriptional level. Incubation of dark-grown carrot cells with fungal elicitors led to a rapid and transient induction of phenylalanine ammonia-lyase corresponding to the formation of 4-hydroxybenzoic acid, but the amount of anthocyanin did not increase and there was no enhancement of any of the enzyme activities which are part of the anthocyanin pathway, including the enzymes catalyzing glycosylation and acylation reactions. Treatment with UV light and elicitors resulted in a rapid induction of the phenylpropanoid pathway, whereas the inducing effect of UV light on the anthocyanin content, on chalcone synthase and on the enzymes catalyzing the final steps of anthocyanin biosynthesis was suppressed. These results indicate a coordinated regulation of the enzymes involved in anthocyanin biosynthesis, an independent inducibility of the phenylpropanoid pathway, and a hierarchy of the different effectors, as shown by the dominating role of the elicitor-signal over the UV stimulus.


Journal of Biological Chemistry | 2010

Staphylococcal Major Autolysin (Atl) Is Involved in Excretion of Cytoplasmic Proteins

Linda M. Pasztor; Anne-Kathrin Ziebandt; Mulugeta Nega; Martin Schlag; Sabine Haase; Mirita Franz-Wachtel; Johannes Madlung; Alfred Nordheim; David E. Heinrichs; Friedrich Götz

Many microorganisms excrete typical cytoplasmic proteins into the culture supernatant. As none of the classical secretion systems appears to be involved, this type of secretion was referred to as “nonclassical protein secretion.” Here, we demonstrate that in Staphylococcus aureus the major autolysin plays a crucial role in release of cytoplasmic proteins. Comparative secretome analysis revealed that in the wild type S. aureus strain, 22 typical cytoplasmic proteins were excreted into the culture supernatant, although in the atl mutant they were significantly decreased. The presence or absence of prophages had little influence on the secretome pattern. In the atl mutant, secondary peptidoglycan hydrolases were increased in the secretome; the corresponding genes were transcriptionally up-regulated suggesting a compensatory mechanism for the atl mutation. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a cytoplasmic indicator enzyme, we showed that all clinical isolates tested excreted this protein. In the wall teichoic acid-deficient tagO mutant with its increased autolysis activity, GAPDH was excreted in even higher amounts than in the WT, confirming the importance of autolysis in excretion of cytoplasmic proteins. To answer the question of how discriminatory the excretion of cytoplasmic proteins is, we performed a two-dimensional PAGE of cytoplasmic proteins isolated from WT. Surprisingly, the most abundant proteins in the cytoplasm were not found in the secretome of the WT, suggesting that there exists a selection mechanism in the excretion of cytoplasmic proteins. As the major autolysin binds at the septum site, we assume that the proteins are preferentially released at and during septum formation.


Journal of Experimental Botany | 2007

Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures

Žarko Barjaktarović; Alfred Nordheim; Tobias Lamkemeyer; Claudia Fladerer; Johannes Madlung; Rüdiger Hampp

In previous studies it has been shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by altered gene expression. In this study an investigation was carried out into how different g conditions affect the proteome of such cells. For this purpose, callus cells were exposed to 8 g (centrifugation) and simulated microgravity (2-D clinorotation: fast rotating clinostat, yielding 0.0016 g at maximum; and 3-D random positioning) for up to 16 h. Extracts containing total soluble protein were subjected to 2-D SDS-PAGE. Image analysis of Sypro Ruby-stained gels showed that approximately 28 spots reproducibly and significantly (P <0.05) changed in amount after 2 h of hypergravity (18 up- and 10 down-regulated). These spots were analysed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). In the case of 2-D clinorotation, 19 proteins changed in a manner similar to hypergravity, while random positioning affected only eight spots. Identified proteins were mainly stress related, and are involved in detoxification of reactive oxygen species, signalling, and calcium binding. Surprisingly, centrifugation and clinorotation showed homologies which were not detected for random positioning. The data indicate that simulation of weightlessness is different between clinorotation and random positioning.


BMC Physiology | 2009

Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 and 20°C) mainly affects protein metabolism

Susanne Schwerin; Bettina Zeis; Tobias Lamkemeyer; Rüdiger J. Paul; Marita Koch; Johannes Madlung; Claudia Fladerer; Ralph Pirow

BackgroundTemperature affects essentially every aspect of the biology of poikilothermic animals including the energy and mass budgets, activity, growth, and reproduction. While thermal effects in ecologically important groups such as daphnids have been intensively studied at the ecosystem level and at least partly at the organismic level, much less is known about the molecular mechanisms underlying the acclimation to different temperatures. By using 2D gel electrophoresis and mass spectrometry, the present study identified the major elements of the temperature-induced subset of the proteome from differently acclimated Daphnia pulex.ResultsSpecific sets of proteins were found to be differentially expressed in 10°C or 20°C acclimated D. pulex. Most cold-repressed proteins comprised secretory enzymes which are involved in protein digestion (trypsins, chymotrypsins, astacin, carboxypeptidases). The cold-induced sets of proteins included several vitellogenin and actin isoforms (cytoplasmic and muscle-specific), and an AAA+ ATPase. Carbohydrate-modifying enzymes were constitutively expressed or down-regulated in the cold.ConclusionSpecific sets of cold-repressed and cold-induced proteins in D. pulex can be related to changes in the cellular demand for amino acids or to the compensatory control of physiological processes. The increase of proteolytic enzyme concentration and the decrease of vitellogenin, actin and total protein concentration between 10°C and 20°C acclimated animals reflect the increased amino-acids demand and the reduced protein reserves in the animals body. Conversely, the increase of actin concentration in cold-acclimated animals may contribute to a compensatory mechanism which ensures the relative constancy of muscular performance. The sheer number of peptidase genes (serine-peptidase-like: > 200, astacin-like: 36, carboxypeptidase-like: 30) in the D. pulex genome suggests large-scaled gene family expansions that might reflect specific adaptations to the lifestyle of a planktonic filter feeder in a highly variable aquatic environment.


Journal of Experimental Botany | 2009

Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana

Žarko Barjaktarović; Wolfgang Schütz; Johannes Madlung; Claudia Fladerer; Alfred Nordheim; Rüdiger Hampp

In a recent study it was shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly in amount (P <0.05) after 2 h of hypergravity (18 up-regulated, 10 down-regulated) could be identified. The corresponding proteins were largely involved in stress responses, including the detoxification of reactive oxygen species (ROS). In the present study, these investigations are extended to phosphorylated proteins. For this purpose, callus cell cultures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded the most reliable data. The first changes, however, were visible as early as 10 min after the start of treatment. In comparison to 1 g controls, exposure to hypergravity resulted in 18 protein spots, and random positioning in 25, respectively, with increased/decreased signal intensity by at least 2-fold (P <0.05). Only one spot (alanine aminotransferase) responded the same way under both treatments. After 30 min of RP, four spots appeared, which could not be detected in control samples. Among the protein spots altered in phosphorylation, it was possible to identify 24 from those responding to random positioning and 12 which responded to 8 g. These 12 proteins (8 g) are partly (5 out of 12) the same as those changed in expression after exposure to 2 h of hypergravity. The respective proteins are involved in scavenging and detoxification of ROS (32%), primary metabolism (20.5%), general signalling (14.7%), protein translation and proteolysis (14.7%), and ion homeostasis (8.8%). Together with our recent data on protein expression, it is assumed that changes in gravitational fields induce the production of ROS. Our data further indicate that responses toward RP are more by post-translational protein modulation (most changes in the degree of phosphorylation occur under RP-treatment) than by protein expression (hypergravity).

Collaboration


Dive into the Johannes Madlung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Macek

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Erich Gulbins

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge