Johannes Pfeil
University Hospital Heidelberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Pfeil.
PLOS ONE | 2011
Steffen Borrmann; Philip Sasi; Leah Mwai; Mahfudh Bashraheil; Ahmed M Abdallah; Steven Muriithi; Henrike Frühauf; Barbara Schaub; Johannes Pfeil; Judy Peshu; Warunee Hanpithakpong; Anja Rippert; Elizabeth Juma; Benjamin Tsofa; Moses Mosobo; Brett Lowe; Faith Osier; Greg Fegan; Niklas Lindegardh; Alexis Nzila; Norbert Peshu; Margaret J. Mackinnon; Kevin Marsh
Background The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies. Methods On the Kenyan coast we studied the treatment responses in 474 children 6–59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995) Results The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005–2006 to 87% in 2007–2008 (odds ratio, 5.4, 95%CI, 2.7–11.1; P<0.001) and from 81% to 95% (OR, 4.1, 95%CI, 1.7–9.9; P = 0.002) in the DHA-PPQ and AM-LM groups, respectively. In parallel, Kaplan-Meier estimated risks of apparent recrudescent infection by day 84 increased from 7% to 14% (P = 0.1) and from 6% to 15% (P = 0.05) with DHA-PPQ and AM-LM, respectively. Coinciding with decreasing transmission in the study area, clinical tolerance to parasitemia (defined as absence of fever) declined between 2005–2006 and 2007–2008 (OR body temperature >37.5°C, 2.8, 1.9–4.1; P<0.001). Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof. Conclusions The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates. Trial Registration Controlled-Trials.com ISRCTN88705995
PLOS ONE | 2014
Julia Tabatabai; Christiane Prifert; Johannes Pfeil; Jürgen Grulich-Henn; Paul Schnitzler
Respiratory syncytial virus (RSV) is the leading cause of hospitalization especially in young children with respiratory tract infections (RTI). Patterns of circulating RSV genotypes can provide a better understanding of the molecular epidemiology of RSV infection. We retrospectively analyzed the genetic diversity of RSV infection in hospitalized children with acute RTI admitted to University Hospital Heidelberg/Germany between October 2012 and April 2013. Nasopharyngeal aspirates (NPA) were routinely obtained in 240 children younger than 2 years of age who presented with clinical symptoms of upper or lower RTI. We analyzed NPAs via PCR and sequence analysis of the second variable region of the RSV G gene coding for the attachment glycoprotein. We obtained medical records reviewing routine clinical data. RSV was detected in 134/240 children. In RSV-positive patients the most common diagnosis was bronchitis/bronchiolitis (75.4%). The mean duration of hospitalization was longer in RSV-positive compared to RSV-negative patients (3.5 vs. 5.1 days; p<0.01). RSV-A was detected in 82.1%, RSV-B in 17.9% of all samples. Phylogenetic analysis of 112 isolates revealed that the majority of RSV-A strains (65%) belonged to the novel ON1 genotype containing a 72-nucleotide duplication. However, genotype ON1 was not associated with a more severe course of illness when taking basic clinical/laboratory parameters into account. Molecular characterization of RSV confirms the co-circulation of multiple genotypes of subtype RSV-A and RSV-B. The duplication in the G gene of genotype ON1 might have an effect on the rapid spread of this emerging RSV strain.
PLOS Pathogens | 2016
Angelika Hoffmann; Johannes Pfeil; Julieta Alfonso; Felix T. Kurz; Felix Sahm; Sabine Heiland; Hannah Monyer; Martin Bendszus; Ann-Kristin Mueller; Xavier Helluy; Mirko Pham
It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis.
Vaccine | 2014
Johannes Pfeil; Katharina Jutta Sepp; Kirsten Heiss; Michael Meister; Ann-Kristin Mueller; Steffen Borrmann
Experimental whole-parasite immunization through concurrent administration of infectious Plasmodium sporozoites with drugs that prevent pathogenic blood-stage infection represents the current benchmark in malaria vaccine development. Key questions concerning translation remain, including the requirement for single-dose drug regimens that can reliably prevent breakthrough infections. We assessed the feasibility and efficacy of immunization with single-dose piperaquine chemoprophylaxis and concurrent sporozoite administration (PPQ-CPS) in the murine P. berghei ANKA/C57BL/6 infection model. We demonstrate that PPQ-CPS is protective with an efficacy comparable to previous findings using whole-parasite immunization under chloroquine chemoprophylaxis. PPQ-CPS immunization resulted in an expansion of intrahepatic and intrasplenic effector memory CD8(+) T cells. In summary, PPQ-CPS appears to be a safe and efficacious immunization regimen in the rodent malaria model and may thus become an important improvement regarding the translation of whole-parasite immunization toward a human malaria vaccine.
Orphanet Journal of Rare Diseases | 2013
Johannes Pfeil; Stefan Listl; Georg F. Hoffmann; Stefan Kölker; Martin Lindner; Peter Burgard
BackgroundGlutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel.MethodsWe assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy.ResultsWithin a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 – 4.5) and about one life year is gained (95% CI 0.7 – 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon.ConclusionWithin the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system.
PLOS ONE | 2014
Johannes Pfeil; Steffen Borrmann; Yesim Tozan
Background Recent multi-centre trials showed that dihydroartemisinin-piperaquine (DP) was as efficacious and safe as artemether-lumefantrine (AL) for treatment of young children with uncomplicated P. falciparum malaria across diverse transmission settings in Africa. Longitudinal follow-up of patients in these trials supported previous findings that DP had a longer post-treatment prophylactic effect than AL, reducing the risk of reinfection and conferring additional health benefits to patients, particularly in areas with moderate to high malaria transmission. Methods We developed a Markov model to assess the cost-effectiveness of DP versus AL for first-line treatment of uncomplicated malaria in young children from the provider perspective, taking into consideration the post-treatment prophylactic effects of the drugs as reported by a recent multi-centre trial in Africa and using the maximum manufacturer drug prices for artemisinin-based combination therapies set by the Global Fund in 2013. We estimated the price per course of treatment threshold above which DP would cease to be a cost-saving alternative to AL as a first-line antimalarial drug. Results First-line treatment with DP compared to AL averted 0.03 DALYs (95% CI: 0.006–0.07) and 0.001 deaths (95% CI: 0.00–0.002) and saved
BMC Research Notes | 2011
Matthew D. Lewis; Johannes Pfeil; Ann-Kristin Mueller
0.96 (95% CI: 0.33–2.46) per child over one year. The results of the threshold analysis showed that DP remained cost-saving over AL for any DP cost below
Journal of Clinical Microbiology | 2017
Rebecca Marie Peters; Sarah Valerie Schnee; Julia Tabatabai; Paul Schnitzler; Johannes Pfeil
1.23 per course of treatment. Conclusions DP is superior to AL from both the clinical and economic perspectives for treatment of uncomplicated P. falciparum malaria in young children. A paediatric dispersible formulation of DP is under development and should facilitate a targeted deployment of this antimalarial drug. The use of DP as first-line antimalarial drug in paediatric malaria patients in moderate to high transmission areas of Africa merits serious consideration by health policymakers.
BMC Infectious Diseases | 2017
Sarah Valerie Schnee; Johannes Pfeil; Clara Marlene Ihling; Julia Tabatabai; Paul Schnitzler
BackgroundChloroquine (CQ) is utilized as both cure and prophylaxis to Plasmodium infection. In animal studies, CQ administration to experimental animals is via intraperitoneal (i.p.) injection of a single dose that varies from daily to several times per week. Such daily administration can be distressing to the animals and provoke aggressive behaviors that may affect the immune responses of the animal and interfere with data read-outs.FindingsWe describe a novel, viable and efficacious prophylactic and curative administration route whereby chloroquine is continuously supplied in the drinking water to experimental animals. The prophylactic effect is robust and the curative effect against patent blood stage infection comparable to the traditional route of i.p. administration. Continuous drinking water administration may decrease animal stress responses and thus improve the reliability of experimental data.
American Journal of Tropical Medicine and Hygiene | 2015
Johannes Pfeil; Steffen Borrmann; Quique Bassat; Modest Mulenga; Ambrose Talisuna; Yesim Tozan
ABSTRACT Alere i RSV is a novel rapid test which applies a nicking enzyme amplification reaction to detect respiratory syncytial virus in point-of-care settings. In this study, we evaluated the Alere i RSV assay by using frozen nasopharyngeal swab samples that were collected in viral transport medium from children hospitalized with acute respiratory tract infection during the 2015-2016 winter season. Alere i RSV assay results were compared to those for Altona RealStar RSV real-time reverse transcription-PCR (RT-PCR). We found that the overall sensitivity and specificity of the Alere i RSV test was 100% (95% confidence intervals [CI], 93% to 100%) and 97% (95% CI, 89% to 100%), respectively. Positive samples were identified within 5 to 7 min from sample collection. Overall, the Alere i RSV test performed well compared to the RT-PCR assay and has the potential to facilitate the detection of RSV in point-of-care settings.