Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes Quaas is active.

Publication


Featured researches published by Johannes Quaas.


Reviews of Geophysics | 2014

Global observations of aerosol‐cloud‐precipitation‐climate interactions

Daniel Rosenfeld; Meinrat O. Andreae; Ari Asmi; Mian Chin; Gerrit de Leeuw; David P. Donovan; Ralph A. Kahn; Stefan Kinne; Niku Kivekäs; Markku Kulmala; William K. M. Lau; K. Sebastian Schmidt; Tanja Suni; Thomas Wagner; Martin Wild; Johannes Quaas

Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects of meteorology from those of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing. Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.


Journal of Climate | 2011

On Constraining Estimates of Climate Sensitivity with Present-Day Observations through Model Weighting

Daniel Klocke; Robert Pincus; Johannes Quaas

The distribution of model-based estimates of equilibrium climate sensitivity has not changed substantially in more than 30 years. Efforts to narrow this distribution by weighting projections according to measures of modelfidelity have so far failed, largely because climate sensitivity is independent of current measures of skill in current ensembles of models. This work presents a cautionary example showing that measures of model fidelity that are effective at narrowing the distribution of future projections (because they are systematically related to climate sensitivity in an ensemble of models) may be poor measures of the likelihood that a model will provideanaccurateestimateofclimatesensitivity(andthus degradedistributions ofprojectionsiftheyare used as weights). Furthermore, it appears unlikely that statistical tests alone can identify robust measures of likelihood.The conclusions are drawn fromtwo ensembles: one obtainedby perturbingparameters in a single climate model and a second containing the majority of the world’s climate models. The simple ensemble reproduces many aspects of the multimodel ensemble, including the distributions of skill in reproducing the present-day climatology of clouds and radiation, the distribution of climate sensitivity, and the dependence of climate sensitivity on certain cloud regimes. Weighting by error measures targeted on those regimes permits the development of tighter relationships between climate sensitivity and model error and, hence, narrower distributions of climate sensitivity in the simple ensemble. These relationships, however, do not carry into the multimodel ensemble. This suggests that model weighting based on statistical relationships alone is unfounded and perhaps that climate model errors are still large enough that model weighting is not sensible.


Geophysical Research Letters | 2005

Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data

Johannes Quaas; Olivier Boucher

[1] The indirect effects of anthropogenic aerosols are expected to cause a significant radiative forcing of the Earth’s climate whose magnitude, however, is still uncertain. Most climate models use parameterizations for the aerosol indirect effects based on so-called ‘‘empirical relationships’’ which link the cloud droplet number concentration to the aerosol concentration. New satellite datasets such as those from the POLDER and MODIS instruments are well suited to evaluate and improve such parameterizations at a global scale. We derive statistical relationships of cloud-top droplet radius and aerosol index (or aerosol optical depth) from satellite retrievals and fit an empirical parameterization in a general circulation model to match the relationships. When applying the fitted parameterizations in the model, the simulated radiative forcing by the first aerosol indirect effect is reduced by 50% as compared to our baseline simulation (down to � 0.3 and � 0.4 Wm � 2 when using MODIS and POLDER satellite data, respectively). Citation: Quaas, J., and O. Boucher (2005), Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data, Geophys. Res. Lett., 32, L17814, doi:10.1029/2005GL023850.


Geophysical Research Letters | 2005

Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century

Jean-Louis Dufresne; Johannes Quaas; Olivier Boucher; Sebastien Denvil; L. Fairhead

[1] In this study, we examine the time evolution of the relative contribution of sulfate aerosols and greenhouse gases to anthropogenic climate change. We use the new IPSL-CM4 coupled climate model for which the first indirect effect of sulfate aerosols has been calibrated using POLDER satellite data. For the recent historical period the sulfate aerosols play a key role on the temperature increase with a cooling effect of 0.5 K, to be compared to the 1.4 K warming due to greenhouse gas increase. In contrast, the projected temperature change for the 21st century is remarkably independent of the effects of anthropogenic sulfate aerosols for the SRES-A2 scenario. Those results are interpreted comparing the different radiative forcings, and can be extended to other scenarios. We also highlight that the first indirect effect of aerosol strongly depends on the land surface model by changing the cloud cover. Citation: Dufresne, J.-L., J. Quaas, O. Boucher, S. Denvil, and L. Fairhead (2005), Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century, Geophys. Res. Lett., 32, L21703, doi:10.1029/ 2005GL023619.


Geophysical Research Letters | 2015

Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds derived from A-Train satellite retrievals

Johannes Mülmenstädt; Odran Sourdeval; Julien Delanoë; Johannes Quaas

A climatology of thermodynamic phase of precipitating cloud is presented derived from global, land and ocean, retrievals from Cloudsat, CALIPSO, and MODIS. Like precipitation rate, precipitation frequency is dominated by warm rain, defined as rain produced via the liquid phase only, over the tropical oceans outside the ITCZ and by cold rain, produced via the ice phase, over the midlatitude oceans and continents. Warm rain is very infrequent over the continents, with significant warm rain found only in onshore flow in the tropics, and over India, China, and Indochina. Comparison of the properties of precipitating and non-precipitating warm clouds shows that the scarcity of warm rain over land can be explained by smaller effective radii in continental clouds that delay the onset of precipitation. The results highlight the importance of ice-phase processes for the global hydrological cycle and may lead to an improved parameterization of precipitation in general circulation models.


Bulletin of the American Meteorological Society | 2007

Different Approaches for Constraining Global Climate Models of the Anthropogenic Indirect Aerosol Effect

Ulrike Lohmann; Johannes Quaas; Stefan Kinne; Johann Feichter

Assessments of the influence of aerosol emissions from human activities on the radiation budget, in particular via the modification of cloud properties, have been a challenge. In light of the variability to both aerosol properties and environmental properties affected by aerosols, observational evidence alone cannot provide accurate and global answers, because detailed observations are locally limited and/or lack statistical significance. Thus, current understanding is predominantly derived from simulations with ancies to envelope (backward) modeling, however, suggest that many aerosol processes in global (forward) modeling are not properly considered. Using analytically derived parameterizations is recommended wherever possible. If an analytical method does not exist or is too demanding computationally, laboratory results augmented by field data are the second-best approach. For the constraint of so-derived parameterizations at the GCM scale, evaluating individual parameterizations using statistical rela...


Journal of Geophysical Research | 2016

Constraining the aerosol influence on cloud fraction

Edward Gryspeerdt; Johannes Quaas; Nicolas Bellouin

Aerosol-cloud interactions have the potential to modify many different cloud properties. There is significant uncertainty in the strength of these aerosol-cloud interactions in analyses of observational data, partly due to the difficulty in separating aerosol effects on clouds from correlations generated by local meteorology. The relationship between aerosol and cloud fraction (CF) is particularly important to determine, due to the strong correlation of CF to other cloud properties and its large impact on radiation. It has also been one of the hardest to quantify from satellites due to the strong meteorological covariations involved. This work presents a new method to analyze the relationship between aerosol optical depth (AOD) and CF. By including information about the cloud droplet number concentration (CDNC), the impact of the meteorological covariations is significantly reduced. This method shows that much of the AOD-CF correlation is explained by relationships other than that mediated by CDNC. By accounting for these, the strength of the global mean AOD-CF relationship is reduced by around 80%. This suggests that the majority of the AOD-CF relationship is due to meteorological covariations, especially in the shallow cumulus regime. Requiring CDNC to mediate the AOD-CF relationship implies an effective anthropogenic radiative forcing from an aerosol influence on liquid CF of −0.48 W m−2 (−0.1 to −0.64 W m−2), although some uncertainty remains due to possible biases in the CDNC retrievals in broken cloud scenes.


Geophysical Research Letters | 2014

Pollution trends over Europe constrain global aerosol forcing as simulated by climate models

Ribu Cherian; Johannes Quaas; Marc Salzmann; Martin Wild

An increasing trend in surface solar radiation (solar brightening) has been observed over Europe since the 1990s, linked to economic developments and air pollution regulations and their direct as well as cloud-mediated effects on radiation. Here, we find that the all-sky solar brightening trend (1990–2005) over Europe from seven out of eight models (historical simulations in the Fifth Coupled Model Intercomparison Project) scales well with the regional and global mean effective forcing by anthropogenic aerosols (idealized “present-day” minus “preindustrial” runs). The reason for this relationship is that models that simulate stronger forcing efficiencies and stronger radiative effects by aerosol-cloud interactions show both a stronger aerosol forcing and a stronger solar brightening. The all-sky solar brightening is the observable from measurements (4.06±0.60 W m−2 decade−1), which then allows to infer a global mean total aerosol effective forcing at about −1.30 W m−2 with standard deviation ±0.40 W m−2.


Journal of Climate | 2012

Evaluation of Clouds and Precipitation in the ECHAM5 General Circulation Model Using CALIPSO and CloudSat Satellite Data

Christine Nam; Johannes Quaas

AbstractObservations from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and CloudSat satellites are used to evaluate clouds and precipitation in the ECHAM5 general circulation model. Active lidar and radar instruments on board CALIPSO and CloudSat allow the vertical distribution of clouds and their optical properties to be studied on a global scale. To evaluate the clouds modeled by ECHAM5 with CALIPSO and CloudSat, the lidar and radar satellite simulators of the Cloud Feedback Model Intercomparison Project’s Observation Simulator Package are used. Comparison of ECHAM5 with CALIPSO and CloudSat found large-scale features resolved by the model, such as the Hadley circulation, are captured well. The lidar simulator demonstrated ECHAM5 overestimates the amount of high-level clouds, particularly optically thin clouds. High-altitude clouds in ECHAM5 consistently produced greater lidar scattering ratios compared with CALIPSO. Consequently, the lidar signal in ECHAM5 frequently att...


Bulletin of the American Meteorological Society | 2013

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

Nilton De Oliveira Renno; Earle R. Williams; Daniel Rosenfeld; David G. Fischer; Jürgen Fischer; Tibor Kremic; Arun Agrawal; Meinrat O. Andreae; Rosina Bierbaum; Richard J. Blakeslee; Anko Boerner; Neil E. Bowles; Hugh J. Christian; Ann Cox; Jason Dunion; Ákos Horváth; Xianglei Huang; A. Khain; Stefan Kinne; Maria Carmen Lemos; Joyce E. Penner; Ulrich Pöschl; Johannes Quaas; Elena Seran; Bjoern Stevens; Thomas Walati; Thomas Wagner

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. Measurements by current satellites allow the determination of crude profiles of cloud particle size, but not of the activated CCN that seed them. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns, utilizing a new technique and high-heritage instruments to measure all the quantities necessary to produce the first global survey maps of activated CCN and the properties of the clouds associated with them. CHASER also determines the activated CCN...

Collaboration


Dive into the Johannes Quaas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Stier

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge