Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johannes R. Hov is active.

Publication


Featured researches published by Johannes R. Hov.


Gastroenterology | 2010

Genome-Wide Association Analysis in Primary Sclerosing Cholangitis

Tom H. Karlsen; Andre Franke; Espen Melum; Arthur Kaser; Johannes R. Hov; Tobias Balschun; Benedicte A. Lie; Annika Bergquist; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Christian Rust; Eva Philipp; Teresa Fritz; Liesbet Henckaerts; Rinse K. Weersma; Pieter Stokkers; Cyriel Y. Ponsioen; Cisca Wijmenga; Martina Sterneck; Michael Nothnagel; Jochen Hampe; Andreas Teufel; Heiko Runz; Philip Rosenstiel; Adolf Stiehl; Severine Vermeire; Ulrich Beuers; Michael P. Manns; Erik Schrumpf

BACKGROUND & AIMS We aimed to characterize the genetic susceptibility to primary sclerosing cholangitis (PSC) by means of a genome-wide association analysis of single nucleotide polymorphism (SNP) markers. METHODS A total of 443,816 SNPs on the Affymetrix SNP Array 5.0 (Affymetrix, Santa Clara, CA) were genotyped in 285 Norwegian PSC patients and 298 healthy controls. Associations detected in this discovery panel were re-examined in independent case-control panels from Scandinavia (137 PSC cases and 368 controls), Belgium/The Netherlands (229 PSC cases and 735 controls), and Germany (400 cases and 1832 controls). RESULTS The strongest associations were detected near HLA-B at chromosome 6p21 (rs3099844: odds ratio [OR], 4.8; 95% confidence interval [CI], 3.6-6.5; P = 2.6 x 10(-26); and rs2844559: OR, 4.7; 95% CI, 3.5-6.4; P = 4.2 x 10(-26) in the discovery panel). Outside the HLA complex, rs9524260 at chromosome 13q31 showed significant associations in 3 of 4 study panels. Lentiviral silencing of glypican 6, encoded at this locus, led to the up-regulation of proinflammatory markers in a cholangiocyte cell line. Of 15 established ulcerative colitis susceptibility loci, significant replication was obtained at chromosomes 2q35 and 3p21 (rs12612347: OR, 1.26; 95% CI, 1.06-1.50; and rs3197999: OR, 1.22; 95% CI, 1.02-1.47, respectively), with circumstantial evidence supporting the G-protein-coupled bile acid receptor 1 and macrophage-stimulating 1, respectively, as the likely disease genes. CONCLUSIONS Strong HLA associations and a subset of genes involved in bile homeostasis and other inflammatory conditions constitute key components of the genetic architecture of PSC.


The Lancet | 2016

Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

Isabelle Cleynen; Gabrielle Boucher; Luke Jostins; L. Philip Schumm; Sebastian Zeissig; Tariq Ahmad; Vibeke Andersen; Jane M. Andrews; Vito Annese; Stephan Brand; Steven R. Brant; Judy H. Cho; Mark J. Daly; Marla Dubinsky; Richard H. Duerr; Lynnette R. Ferguson; Andre Franke; Richard B. Gearry; Philippe Goyette; Hakon Hakonarson; Jonas Halfvarson; Johannes R. Hov; Hailang Huang; Nicholas A. Kennedy; Ian C. Lawrance; James C. Lee; Jack Satsangi; Stephan Schreiber; Emilie Théâtre; Andrea E. van der Meulen-de Jong

Summary Background Crohns disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohns disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohns disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohns disease, ileal Crohns disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohns disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10−78), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10−18). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohns disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10−4). Interpretation Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohns disease, colonic Crohns disease, and ulcerative colitis) than by Crohns disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patients disease, in part genetically determined, and the major driver to changes in disease behaviour over time. Funding International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).


Nature Genetics | 2011

Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci.

Espen Melum; Andre Franke; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Felix Offner; Brian D. Juran; Jon K. Laerdahl; Verena Labi; Einar Björnsson; Rinse K. Weersma; Liesbet Henckaerts; Andreas Teufel; Christian Rust; Eva Ellinghaus; Tobias Balschun; Kirsten Muri Boberg; David Ellinghaus; Annika Bergquist; Peter Sauer; Euijung Ryu; Johannes R. Hov; Jochen Wedemeyer; Björn Lindkvist; Michael Wittig; Robert J. Porte; Kristian Holm; Christian Gieger; H-Erich Wichmann; Pieter Stokkers

Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4–7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 × 10−16 and P = 4.1 × 10−8, respectively).


Journal of Hepatology | 2012

Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci

Trine Folseraas; Espen Melum; Philipp Rausch; Brian D. Juran; Eva Ellinghaus; Alexey Shiryaev; Jon K. Laerdahl; David Ellinghaus; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Johannes R. Hov; O. P. F. Clausen; Rinse K. Weersma; Marcel Janse; Kirsten Muri Boberg; Einar Björnsson; Hanns-Ulrich Marschall; Isabelle Cleynen; Philip Rosenstiel; Kristian Holm; Andreas Teufel; Christian Rust; Christian Gieger; H-Erich Wichmann; Annika Bergquist; Euijung Ryu; Cyriel Y. Ponsioen; Heiko Runz; Martina Sterneck

BACKGROUND & AIMS A limited number of genetic risk factors have been reported in primary sclerosing cholangitis (PSC). To discover further genetic susceptibility factors for PSC, we followed up on a second tier of single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS). METHODS We analyzed 45 SNPs in 1221 PSC cases and 3508 controls. The association results from the replication analysis and the original GWAS (715 PSC cases and 2962 controls) were combined in a meta-analysis comprising 1936 PSC cases and 6470 controls. We performed an analysis of bile microbial community composition in 39 PSC patients by 16S rRNA sequencing. RESULTS Seventeen SNPs representing 12 distinct genetic loci achieved nominal significance (p(replication) <0.05) in the replication. The most robust novel association was detected at chromosome 1p36 (rs3748816; p(combined)=2.1 × 10(-8)) where the MMEL1 and TNFRSF14 genes represent potential disease genes. Eight additional novel loci showed suggestive evidence of association (p(repl) <0.05). FUT2 at chromosome 19q13 (rs602662; p(comb)=1.9 × 10(-6), rs281377; p(comb)=2.1 × 10(-6) and rs601338; p(comb)=2.7 × 10(-6)) is notable due to its implication in altered susceptibility to infectious agents. We found that FUT2 secretor status and genotype defined by rs601338 significantly influence biliary microbial community composition in PSC patients. CONCLUSIONS We identify multiple new PSC risk loci by extended analysis of a PSC GWAS. FUT2 genotype needs to be taken into account when assessing the influence of microbiota on biliary pathology in PSC.


Nature Genetics | 2016

Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota

Jun Wang; Louise B. Thingholm; Jurgita Skiecevičienė; Philipp Rausch; Martin Kummen; Johannes R. Hov; Frauke Degenhardt; Femke-Anouska Heinsen; Malte C. Rühlemann; Silke Szymczak; Kristian Holm; Tonu Esko; Jun Sun; Mihaela Pricop-Jeckstadt; Samer Al-Dury; Pavol Bohov; Jörn Bethune; Felix Sommer; David Ellinghaus; Rolf K. Berge; Matthias Hübenthal; Manja Koch; Karin Schwarz; Gerald Rimbach; Patricia Hübbe; Wei-Hung Pan; Raheleh Sheibani-Tezerji; Robert Häsler; Philipp Rosenstiel; Mauro D'Amato

Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr−/− mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10−8) associations at multiple additional loci identify other important points of host–microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.


Journal of Internal Medicine | 2015

Microbiota‐dependent metabolite trimethylamine‐N‐oxide is associated with disease severity and survival of patients with chronic heart failure

Marius Trøseid; Thor Ueland; Johannes R. Hov; Asbjørn Svardal; Ida Gregersen; Christen P. Dahl; Svend Aakhus; Einar Gude; Bodil Bjørndal; Bente Halvorsen; Tom H. Karlsen; P. Aukrust; Lars Gullestad; Rolf K. Berge; Arne Yndestad

Recent metabolomic, experimental and clinical studies have demonstrated that trimethylamine‐N‐oxide (TMAO), a microbiota‐dependent metabolite from dietary phosphatidylcholine and carnitine, is a strong predictor of coronary artery disease (CAD). This finding suggests a link between the gut microbiota and atherosclerosis. The potential impact of TMAO in chronic heart failure (HF) is unknown. We hypothesized that TMAO levels would provide prognostic information about adverse outcomes in chronic HF.


Hepatology | 2013

Genome-Wide Association Analysis in Primary Sclerosing Cholangitis and Ulcerative Colitis Identifies Risk Loci at GPR35 and TCF4

David Ellinghaus; Trine Folseraas; Kristian Holm; Eva Ellinghaus; Espen Melum; Tobias Balschun; Jon K. Laerdahl; Alexey Shiryaev; Daniel Gotthardt; Tobias J. Weismüller; Christoph Schramm; Michael Wittig; Annika Bergquist; Einar Björnsson; Hanns-Ulrich Marschall; Morten H. Vatn; Andreas Teufel; Christian Rust; Christian Gieger; H-Erich Wichmann; Heiko Runz; Martina Sterneck; Christian Rupp; Felix Braun; Rinse K. Weersma; Cisca Wijmenga; Cyriel Y. Ponsioen; Christopher G. Mathew; Paul Rutgeerts; Severine Vermeire

Approximately 60%‐80% of patients with primary sclerosing cholangitis (PSC) have concurrent ulcerative colitis (UC). Previous genome‐wide association studies (GWAS) in PSC have detected a number of susceptibility loci that also show associations in UC and other immune‐mediated diseases. We aimed to systematically compare genetic associations in PSC with genotype data in UC patients with the aim of detecting new susceptibility loci for PSC. We performed combined analyses of GWAS for PSC and UC comprising 392 PSC cases, 987 UC cases, and 2,977 controls and followed up top association signals in an additional 1,012 PSC cases, 4,444 UC cases, and 11,659 controls. We discovered novel genome‐wide significant associations with PSC at 2q37 [rs3749171 at G‐protein‐coupled receptor 35 (GPR35); P = 3.0 × 10−9 in the overall study population, combined odds ratio [OR] and 95% confidence interval [CI] of 1.39 (1.24‐1.55)] and at 18q21 [rs1452787 at transcription factor 4 (TCF4); P = 2.61 × 10−8, OR (95% CI) = 0.75 (0.68‐0.83)]. In addition, several suggestive PSC associations were detected. The GPR35 rs3749171 is a missense single nucleotide polymorphism resulting in a shift from threonine to methionine. Structural modeling showed that rs3749171 is located in the third transmembrane helix of GPR35 and could possibly alter efficiency of signaling through the GPR35 receptor. Conclusion: By refining the analysis of a PSC GWAS by parallel assessments in a UC GWAS, we were able to detect two novel risk loci at genome‐wide significance levels. GPR35 shows associations in both UC and PSC, whereas TCF4 represents a PSC risk locus not associated with UC. Both loci may represent previously unexplored aspects of PSC pathogenesis. (HEPATOLOGY 2013;58:1074–1083)


Gut | 2017

The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls.

Martin Kummen; Kristian Holm; Jarl Andreas Anmarkrud; Ståle Nygård; Mette Vesterhus; Marte Lie Høivik; Marius Trøseid; Hanns-Ulrich Marschall; Erik Schrumpf; Bjørn Moum; Helge Røsjø; Pål Aukrust; Tom H. Karlsen; Johannes R. Hov

Objective Gut microbiota could influence gut, as well as hepatic and biliary immune responses. We therefore thoroughly characterised the gut microbiota in primary sclerosing cholangitis (PSC) compared with healthy controls (HC) and patients with ulcerative colitis without liver disease. Design We prospectively collected 543 stool samples. After a stringent exclusion process, bacterial DNA was submitted for 16S rRNA gene sequencing. PSC and HC were randomised to an exploration panel or a validation panel, and only significant results (p<0.05, QFDR<0.20) in both panels were reported, followed by a combined comparison of all samples against UC. Results Patients with PSC (N=85) had markedly reduced bacterial diversity compared with HC (N=263, p<0.0001), and a different global microbial composition compared with both HC (p<0.001) and UC (N=36, p<0.01). The microbiota of patients with PSC with and without IBD was similar. Twelve genera separated PSC and HC, out of which 11 were reduced in PSC. However, the Veillonella genus showed a marked increase in PSC compared with both HC (p<0.0001) and UC (p<0.02). Using receiver operating characteristic analysis, Veillonella abundance yielded an area under the curve (AUC) of 0.64 to discriminate PSC from HC, while a combination of PSC-associated genera yielded an AUC of 0.78. Conclusions Patients with PSC exhibited a gut microbial signature distinct from both HC and UC without liver disease, but similar in PSC with and without IBD. The Veillonella genus, which is also associated with other chronic inflammatory and fibrotic conditions, was enriched in PSC.


Journal of Hepatology | 2010

Genetic associations in Italian primary sclerosing cholangitis: heterogeneity across Europe defines a critical role for HLA-C

Johannes R. Hov; Ana Lleo; Carlo Selmi; Bente Woldseth; Luca Fabris; Mario Strazzabosco; Tom H. Karlsen; Pietro Invernizzi

BACKGROUND & AIMS The HLA complex on chromosome 6p21 is firmly established as a risk locus for primary sclerosing cholangitis (PSC). We aimed to exploit genetic differences between Northern Europe and Italy in an attempt to define a causative locus in this genetic region. METHODS Seventy-eight North-Italian PSC patients and 79 controls were included. We performed sequencing-based genotyping of HLA-C, HLA-B, and HLA-DRB1. The major histocompatibility chain-related A (MICA) transmembrane microsatellite was analysed using PCR fragment length determination. The tumour necrosis factor-alpha (TNF-alpha)-308G-->A polymorphism was genotyped with TaqMan. Allele frequencies were compared with Chi-square tests. Uncorrected p-values <0.05 were considered statistically significant when replicating findings in previous studies. The p-values of novel associations were corrected for multiple comparisons (Bonferroni). RESULTS The frequency of the strong inhibitory HLA-C2 killer-immunoglobulin receptor (KIR) ligand variant was significantly reduced in PSC vs. controls (0.39 vs. 0.58, p=0.0006). Consequently, HLA-C1 homozygosity was associated with an increased risk of PSC (OR 3.1; 95% CI 1.4-6.7, p=0.004). Importantly, there were no significant associations with the HLA-Bw4 KIR ligand variant, at the neighbouring MICA locus or with TNF-alpha-308G-->A. At HLA-DRB1, we confirmed positive and negative associations with DRB1*15 and DRB1*07, respectively, while there were no associations with the DRB1*03, *04 or *1301 alleles typically detected in PSC in Northern Europe. CONCLUSIONS The strong inhibitory of the KIR ligand HLA-C2 protects against PSC development in all populations hitherto studied. Further studies on the role of natural killer cells and T-lymphocytes expressing KIRs in PSC pathogenesis are warranted.


Journal of Hepatology | 2013

FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis.

Andreas Wannhoff; Johannes R. Hov; Trine Folseraas; Christian Rupp; Kilian Friedrich; Jarl Andreas Anmarkrud; Karl Heinz Weiss; Peter Sauer; Peter Schirmacher; Kirsten Muri Boberg; Wolfgang Stremmel; Tom H. Karlsen; Daniel Gotthardt

BACKGROUND & AIMS Allelic variants of fucosyltransferases 2 and 3 (FUT2/3) influence serum levels of CA19-9, a screening parameter commonly used for detection of biliary malignancy in PSC. We aimed at improving diagnostic accuracy of CA19-9 by determining the impact of FUT2/3 genotypes. METHODS CA19-9 levels were measured in 433 PSC patients, 41 of whom had biliary malignancy. Genotypes for FUT3 and FUT2 were used to assign patients to one of three groups: A, no FUT3 activity regardless of FUT2 activity; B, both FUT2 and FUT3 activity and C, no FUT2 activity without loss of FUT3 activity. Group-specific cut-off values were determined by Youdens index. RESULTS The median CA19-9 values of cancer-free patients were significantly different (p<0.001) in Groups A (2.0U/ml), B (17.0U/ml), and C (37.0U/ml). Biliary malignancy patients in Groups B and C had significantly higher CA19-9 values than cancer-free patients (p<0.001). The optimal cut-off, as determined by ROC analysis, for all patients was 88.5U/ml. Optimal cut-off values in Groups A, B, and C were 4.0U/ml, 74.5U/ml, and 106.8U/ml, respectively. Use of these values improved sensitivity of CA19-9 in Groups B and C. Further, use of group-dependent cut-off values with 90% sensitivity resulted in a 42.9% reduction of false positive results. CONCLUSIONS Use of FUT2/3 genotype-dependent cut-off values for CA19-9 improved sensitivity and reduced the number of false positive results.

Collaboration


Dive into the Johannes R. Hov's collaboration.

Top Co-Authors

Avatar

Tom H. Karlsen

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristian Holm

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Daniel Gotthardt

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Mette Vesterhus

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar

Erik Schrumpf

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Martin Kummen

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Espen Melum

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge