Johannes Stelzer
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Johannes Stelzer.
Frontiers in Neuroscience | 2014
Johannes Stelzer; Tilo Buschmann; Gabriele Lohmann; Daniel S. Margulies; Robert Trampel; Robert Turner
Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a non-parametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM). The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.
Frontiers in Human Neuroscience | 2014
Johannes Stelzer; Gabriele Lohmann; Karsten Mueller; Tilo Buschmann; Robert M. Turner
Functional magnetic resonance imaging (fMRI) is the workhorse of imaging-based human cognitive neuroscience. The use of fMRI is ever-increasing; within the last 4 years more fMRI studies have been published than in the previous 17 years. This large body of research has mainly focused on the functional localization of condition- or stimulus-dependent changes in the blood-oxygenation-level dependent signal. In recent years, however, many aspects of the commonly practiced analysis frameworks and methodologies have been critically reassessed. Here we summarize these critiques, providing an overview of the major conceptual and practical deficiencies in widely used brain-mapping approaches, and exemplify some of these issues by the use of imaging data and simulations. In particular, we discuss the inherent pitfalls and shortcomings of methodologies for statistical parametric mapping. Our critique emphasizes recent reports of excessively high numbers of both false positive and false negative findings in fMRI brain mapping. We outline our view regarding the broader scientific implications of these methodological considerations and briefly discuss possible solutions.
NeuroImage | 2013
Johannes Stelzer; Yi Chen; Robert Turner
An ever-increasing number of functional magnetic resonance imaging (fMRI) studies are now using information-based multi-voxel pattern analysis (MVPA) techniques to decode mental states. In doing so, they achieve a significantly greater sensitivity compared to when they use univariate frameworks. However, the new brain-decoding methods have also posed new challenges for analysis and statistical inference on the group level. We discuss why the usual procedure of performing t-tests on accuracy maps across subjects in order to produce a group statistic is inappropriate. We propose a solution to this problem for local MVPA approaches, which achieves higher sensitivity than other procedures. Our method uses random permutation tests on the single-subject level, and then combines the results on the group level with a bootstrap method. To preserve the spatial dependency induced by local MVPA methods, we generate a random permutation set and keep it fixed across all locations. This enables us to later apply a cluster size control for the multiple testing problem. More specifically, we explicitly compute the distribution of cluster sizes and use this to determine the p-values for each cluster. Using a volumetric searchlight decoding procedure, we demonstrate the validity and sensitivity of our approach using both simulated and real fMRI data sets. In comparison to the standard t-test procedure implemented in SPM8, our results showed a higher sensitivity. We discuss the theoretical applicability and the practical advantages of our approach, and outline its generalization to other local MVPA methods, such as surface decoding techniques.
Brain | 2015
J. Jacobsen; Johannes Stelzer; Thomas Fritz; Gaël Chételat; Renaud La Joie; Robert Turner
Musical memory is considered to be partly independent from other memory systems. In Alzheimers disease and different types of dementia, musical memory is surprisingly robust, and likewise for brain lesions affecting other kinds of memory. However, the mechanisms and neural substrates of musical memory remain poorly understood. In a group of 32 normal young human subjects (16 male and 16 female, mean age of 28.0 ± 2.2 years), we performed a 7 T functional magnetic resonance imaging study of brain responses to music excerpts that were unknown, recently known (heard an hour before scanning), and long-known. We used multivariate pattern classification to identify brain regions that encode long-term musical memory. The results showed a crucial role for the caudal anterior cingulate and the ventral pre-supplementary motor area in the neural encoding of long-known as compared with recently known and unknown music. In the second part of the study, we analysed data of three essential Alzheimers disease biomarkers in a region of interest derived from our musical memory findings (caudal anterior cingulate cortex and ventral pre-supplementary motor area) in 20 patients with Alzheimers disease (10 male and 10 female, mean age of 68.9 ± 9.0 years) and 34 healthy control subjects (14 male and 20 female, mean age of 68.1 ± 7.2 years). Interestingly, the regions identified to encode musical memory corresponded to areas that showed substantially minimal cortical atrophy (as measured with magnetic resonance imaging), and minimal disruption of glucose-metabolism (as measured with (18)F-fluorodeoxyglucose positron emission tomography), as compared to the rest of the brain. However, amyloid-β deposition (as measured with (18)F-flobetapir positron emission tomography) within the currently observed regions of interest was not substantially less than in the rest of the brain, which suggests that the regions of interest were still in a very early stage of the expected course of biomarker development in these regions (amyloid accumulation → hypometabolism → cortical atrophy) and therefore relatively well preserved. Given the observed overlap of musical memory regions with areas that are relatively spared in Alzheimers disease, the current findings may thus explain the surprising preservation of musical memory in this neurodegenerative disease.
Brain | 2013
Gabriele Lohmann; Johannes Stelzer; Jane Neumann; Nihat Ay; Robert Turner
Two aspects play a key role in recently developed strategies for functional magnetic resonance imaging (fMRI) data analysis: first, it is now recognized that the human brain is a complex adaptive system and exhibits the hallmarks of complexity such as emergence of patterns arising out of a multitude of interactions between its many constituents. Second, the field of fMRI has evolved into a data-intensive, big data endeavor with large databases and masses of data being shared around the world. At the same time, ultra-high field MRI scanners are now available producing data at previously unobtainable quality and quantity. Both aspects have led to shifts in the way in which we view fMRI data. Here, we review recent developments in fMRI data analysis methodology that resulted from these shifts in paradigm.
The Journal of Neuroscience | 2015
X Till Nierhaus; X Norman Forschack; X Sophie K. Piper; Susanne Holtze; Thomas Krause; Birol Taskin; Xiangyu Long; Johannes Stelzer; Daniel S. Margulies; X Jens Steinbrink; Arno Villringer
Most sensory input to our body is not consciously perceived. Nevertheless, it may reach the cortex and influence our behavior. In this study, we investigated noninvasive neural signatures of unconscious cortical stimulus processing to understand mechanisms, which (1) prevent low-intensity somatosensory stimuli from getting access to conscious experience and which (2) can explain the associated impediment of conscious perception for additional stimuli. Stimulation of digit 2 in humans far below the detection threshold elicited a cortical evoked potential (P1) at 60 ms, but no further somatosensory evoked potential components. No event-related desynchronization was detected; rather, there was a transient synchronization in the alpha frequency range. Using the same stimulation during fMRI, a reduced centrality of contralateral primary somatosensory cortex (SI) was found, which appeared to be mainly driven by reduced functional connectivity to frontoparietal areas. We conclude that after subthreshold stimulation the (excitatory) feedforward sweep of bottom-up processing terminates in SI preventing access to conscious experience. We speculate that this interruption is due to a predominance of inhibitory processing in SI. The increase in alpha activity and the disconnection of SI from frontoparietal areas are likely correlates of an elevated perception threshold and may thus serve as a gating mechanism for the access to conscious experience.
Cerebral Cortex | 2016
Michael J. Hove; Johannes Stelzer; Till Nierhaus; Sabrina D. Thiel; Christopher Gundlach; Daniel S. Margulies; Koene R.A. Van Dijk; Robert Turner; Peter E. Keller; Björn Merker
Trance is an absorptive state of consciousness characterized by narrowed awareness of external surroundings and has long been used-for example, by shamans-to gain insight. Shamans across cultures often induce trance by listening to rhythmic drumming. Using functional magnetic resonance imaging (fMRI), we examined the brain-network configuration associated with trance. Experienced shamanic practitioners (n = 15) listened to rhythmic drumming, and either entered a trance state or remained in a nontrance state during 8-min scans. We analyzed changes in network connectivity. Trance was associated with higher eigenvector centrality (i.e., stronger hubs) in 3 regions: posterior cingulate cortex (PCC), dorsal anterior cingulate cortex (dACC), and left insula/operculum. Seed-based analysis revealed increased coactivation of the PCC (a default network hub involved in internally oriented cognitive states) with the dACC and insula (control-network regions involved in maintaining relevant neural streams). This coactivation suggests that an internally oriented neural stream was amplified by the modulatory control network. Additionally, during trance, seeds within the auditory pathway were less connected, possibly indicating perceptual decoupling and suppression of the repetitive auditory stimuli. In sum, trance involved coactive default and control networks, and decoupled sensory processing. This network reconfiguration may promote an extended internal train of thought wherein integration and insight can occur.
PLOS ONE | 2016
Gabriele Lohmann; Johannes Stelzer; Verena Zuber; Tilo Buschmann; Daniel S. Margulies; A Bartels; Klaus Scheffler
The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.
Human Brain Mapping | 2017
Luca Cocchi; Zhengyi Yang; Andrew Zalesky; Johannes Stelzer; Luke J. Hearne; Leonardo L. Gollo; Jason B. Mattingley
Functional magnetic resonance imaging (fMRI) studies have shown that neural activity fluctuates spontaneously between different states of global synchronization over a timescale of several seconds. Such fluctuations generate transient states of high and low correlation across distributed cortical areas. It has been hypothesized that such fluctuations in global efficiency might alter patterns of activity in local neuronal populations elicited by changes in incoming sensory stimuli. To test this prediction, we used a linear decoder to discriminate patterns of neural activity elicited by face and motion stimuli presented periodically while participants underwent time‐resolved fMRI. As predicted, decoding was reliably higher during states of high global efficiency than during states of low efficiency, and this difference was evident across both visual and nonvisual cortical regions. The results indicate that slow fluctuations in global network efficiency are associated with variations in the pattern of activity across widespread cortical regions responsible for representing distinct categories of visual stimulus. More broadly, the findings highlight the importance of understanding the impact of global fluctuations in functional connectivity on specialized, stimulus driven neural processes. Hum Brain Mapp 38:3069–3080, 2017.
bioRxiv | 2017
Gabriele Lohmann; Johannes Stelzer; Karsten Mueller; Eric Lacosse; Tilo Buschmann; Vinod Kumar; Wolfgang Grodd; Klaus Scheffler
Reproducibility is generally regarded as a hallmark of scientific validity. It can be undermined by two very different factors, namely inflated false positive rates or inflated false negative rates. Here we investigate the role of the second factor, i.e. the degree to which true effects are not detected reliably. The availability of large public databases and also supercomputing allows us to tackle this problem quantitatively. Specifically, we estimated the reproducibility in task-based fMRI data over different samples randomly drawn from a large cohort of subjects obtained from the Human Connectome Project. We use the full cohort as a standard of reference to approximate true positive effects, and compute the fraction of those effects that was detected reliably using standard software packages at various smaller sample sizes. We found that with standard sample sizes this fraction was less than 25 percent. We conclude that inflated false negative rates are a major factor that undermine reproducibility. We introduce a new statistical inference algorithm based on a novel test statistic and show that it improves reproducibility without inflating false positive rates.