Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Alberta is active.

Publication


Featured researches published by John A. Alberta.


Neuron | 2000

Sonic Hedgehog-Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System

Q. Richard Lu; Dong-in Yuk; John A. Alberta; Zhimin Zhu; Inka Pawlitzky; Joanne Chan; Andrew P. McMahon; Charles D. Stiles; David H. Rowitch

During development, basic helix-loop-helix (bHLH) proteins regulate formation of neurons from multipotent progenitor cells. However, bHLH factors linked to gliogenesis have not been described. We have isolated a pair of oligodendrocyte lineage genes (Olg-1 and Olg-2) that encode bHLH proteins and are tightly associated with development of oligodendrocytes in the vertebrate central nervous system (CNS). Ectopic expression of Olg-1 in rat cortical progenitor cell cultures promotes formation of oligodendrocyte precursors. In developing mouse embryos, Olg gene expression overlaps but precedes the earliest known markers of the oligodendrocyte lineage. Olg genes are expressed at the telencephalon-diencephalon border and adjacent to the floor plate, a source of the secreted signaling molecule Sonic hedgehog (Shh). Gain- and loss-of-function analyses in transgenic mice demonstrate that Shh is both necessary and sufficient for Olg gene expression in vivo.


Neuron | 2007

Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma

Keith L. Ligon; Emmanuelle Huillard; Shwetal Mehta; Santosh Kesari; Hongye Liu; John A. Alberta; Robert M. Bachoo; Michael F. Kane; David N. Louis; Ronald A. DePinho; David J. Anderson; Charles D. Stiles; David H. Rowitch

Recent studies have identified stem cells in brain cancer. However, their relationship to normal CNS progenitors, including dependence on common lineage-restricted pathways, is unclear. We observe expression of the CNS-restricted transcription factor, OLIG2, in human glioma stem and progenitor cells reminiscent of type C transit-amplifying cells in germinal zones of the adult brain. Olig2 function is required for proliferation of neural progenitors and for glioma formation in a genetically relevant murine model. Moreover, we show p21(WAF1/CIP1), a tumor suppressor and inhibitor of stem cell proliferation, is directly repressed by OLIG2 in neural progenitors and gliomas. Our findings identify an Olig2-regulated lineage-restricted pathway critical for proliferation of normal and tumorigenic CNS stem cells.


Neuron | 1997

A PDGF-Regulated Immediate Early Gene Response Initiates Neuronal Differentiation in Ventricular Zone Progenitor Cells

Brenda P Williams; John K. Park; John A. Alberta; Stephan G Muhlebach; Grace Y. Hwang; Thomas M. Roberts; Charles D. Stiles

When exposed to platelet-derived growth factor (PDGF), uncommitted neuroepithelial cells from the developing cortex of embryonic day 14 (E14) rats develop into neurons. Outward signs of the neuronal phenotype are not observed for 4 days following exposure to PDGF. However, only a brief (2-3 hr) period of PDGF receptor activation is required to initiate neuronal development. During the window of receptor activation, RNA synthesis is essential, but protein synthesis is not. These observations indicate that specification of neuronal fate is mediated by an immediate early gene response.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Development of NG2 neural progenitor cells requires Olig gene function

Keith L. Ligon; Santosh Kesari; Masaaki Kitada; Tao Sun; Heather A. Arnett; John A. Alberta; David J. Anderson; Charles D. Stiles; David H. Rowitch

In the adult central nervous system, two distinct populations of glial cells expressing the chondroitin sulfate proteoglycan NG2 have been described: bipolar progenitor cells and more differentiated “synantocytes.” These cells have diverse neurological functions, including critical roles in synaptic transmission, repair, and regeneration. Despite their potential importance, the genetic factors that regulate NG2 cell development are poorly understood, and the relationship of synantocytes to the oligodendroglial lineage, in particular, remains controversial. Here, we show that >90% of embryonic and adult NG2 cells express Olig2, a basic helix–loop–helix transcription factor required for oligodendrocyte lineage specification. Analysis of mice lacking Olig function demonstrates a failure of NG2 cell development at embryonic and perinatal stages that can be rescued by addition of a transgene containing the human OLIG2 locus. These findings show a general requirement for Olig function in NG2 cell development and highlight further roles for Olig transcription factors in neural progenitor cells.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors

Q. Richard Lu; John K. Park; Elizabeth Noll; Jennifer A. Chan; John A. Alberta; Dong-in Yuk; M. Garcia Alzamora; David N. Louis; Charles D. Stiles; David H. Rowitch; Peter McL. Black

The most common primary tumors of the human brain are thought to be of glial cell origin. However, glial cell neoplasms cannot be fully classified by cellular morphology or with conventional markers for astrocytes, oligodendrocytes, or their progenitors. Recent insights into central nervous system tumorigenesis suggest that novel molecular markers might be found among factors that have roles in glial development. Oligodendrocyte lineage genes (Olig1/2) encode basic helix–loop–helix transcription factors. In the rodent central nervous system, they are expressed exclusively in oligodendrocytes and oligodendrocyte progenitors, and Olig1 can promote formation of an chondroitin sulfate proteoglycon-positive glial progenitor. Here we show that human OLIG genes are expressed strongly in oligodendroglioma, contrasting absent or low expression in astrocytoma. Our data provide evidence that neoplastic cells of oligodendroglioma resemble oligodendrocytes or their progenitor cells and may derive from cells of this lineage. They further suggest the diagnostic potential of OLIG markers to augment identification of oligodendroglial tumors.


Journal of Biological Chemistry | 1996

Differential Utilization of Trk Autophosphorylation Sites

Rosalind A. Segal; Anita Bhattacharyya; Lori A. Rua; John A. Alberta; Robert M. Stephens; David R. Kaplan; Charles D. Stiles

Tyrosine autophosphorylation controls the catalytic and signaling activities of the neurotrophin receptors, the Trks. To analyze the regulation of distinct tyrosine sites, we generated a panel of antibodies that report the phosphorylation state of individual tyrosines within the Trk cytoplasmic domain. Using pheochromocytoma-derived cell lines, we show that individual tyrosines within the nerve growth factor receptor TrkA are phosphorylated in a non-coordinate fashion following receptor activation. The non-coordinate response of these tyrosines reflects their separate functions in regulating the catalytic and signaling activities of Trk receptors. The differential utilization of distinct sites on Trk receptor tyrosine kinases suggests that the receptor can specify both the timing and the nature of neurotrophin-stimulated signal transduction pathways. Moreover, we show that these Trk autophosphorylation sites, which have hitherto been mapped and characterized only in non-neuronal cell lines, are activated in normal neurons in response to ligand stimulation.


The Journal of Neuroscience | 2005

Microanatomy of Axon/Glial Signaling during Wallerian Degeneration

Amy D. Guertin; Dan P. Zhang; Kimberley S. Mak; John A. Alberta; Haesun A. Kim

How do myelinated axons signal to the nuclei of cells that enwrap them? The cell bodies of oligodendrocytes and Schwann cells are segregated from axons by multiple layers of bimolecular lipid leaflet and myelin proteins. Conventional signal transduction strategies would seem inadequate to the challenge without special adaptations. Wallerian degeneration provides a model to study axon-to-Schwann cell signaling in the context of nerve injury. We show a hitherto undetected rapid, but transient, activation of the receptor tyrosine kinase erbB2 in myelinating Schwann cells after sciatic nerve axotomy. Deconvolving microscopy using phosphorylation state-specific antibodies shows that erbB2 activation emanates from within the microvilli of Schwann cells, in direct contact with the axons they enwrap. To define the functional role of this transient activation, we used a small molecule antagonist of erbB2 activation (PKI166). The response of myelinating Schwann cells to axotomy is inhibited by PKI166 in vivo. Using neuron/Schwann cell cocultures prepared in compartmentalized cell culture chambers, we show that even transient activation of erbB2 is sufficient to initiate Schwann cell demyelination and that the initiating functions of erbB2 are localized to Schwann cells.


Cancer Cell | 2011

The central nervous system restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma

Shwetal Mehta; Emmanuelle Huillard; Santosh Kesari; Cecile L. Maire; Diane Golebiowski; Emily P. Harrington; John A. Alberta; Michael F. Kane; Matthew Theisen; Keith L. Ligon; David H. Rowitch; Charles D. Stiles

High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.


Molecular and Cellular Neuroscience | 2001

Sonic hedgehog is required during an early phase of oligodendrocyte development in mammalian brain.

John A. Alberta; Song-Kyu Park; Jose Mora; Dong-in Yuk; Inka Pawlitzky; Palma Iannarelli; Timothy Vartanian; Charles D. Stiles; David H. Rowitch

Oligodendrocyte precursor development in the embryonic spinal cord is thought to be regulated by the secreted signal, Sonic hedgehog (Shh). Such precursors can be identified by the expression of Olig genes, encoding basic helix-loop-helix factors, in the spinal cord and brain. However, the signaling pathways that govern oligodendrocyte precursor (OLP) development in the rostral central nervous system are poorly understood. Here, we show that Shh is required for oligodendrocyte development in the mouse forebrain and spinal cord, and that Shh proteins are both necessary and sufficient for OLP production in cortical neuroepithelial cultures. Moreover, adenovirus-mediated Olig1 ectopic expression can promote OLP formation independent of Shh activity. Our results demonstrate essential functions for Shh during early phases of oligodendrocyte development in the mammalian central nervous system. They further suggest that a key role of Shh signaling is activation of Olig genes.


Neuron | 2011

Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors

Yu Sun; Dimphna H. Meijer; John A. Alberta; Shwetal Mehta; Michael F. Kane; An Chi Tien; Hui Fu; Magdalena A. Petryniak; Gregory B. Potter; Zijing Liu; James F. Powers; I. Sophie Runquist; David H. Rowitch; Charles D. Stiles

The bHLH transcription factors that regulate early development of the central nervous system can generally be classified as either antineural or proneural. Initial expression of antineural factors prevents cell cycle exit and thereby expands the pool of neural progenitors. Subsequent (and typically transient) expression of proneural factors promotes cell cycle exit, subtype specification, and differentiation. Against this backdrop, the bHLH transcription factor Olig2 in the oligodendrocyte lineage is unorthodox, showing antineural functions in multipotent CNS progenitor cells but also sustained expression and proneural functions in the formation of oligodendrocytes. We show here that the proliferative function of Olig2 is controlled by developmentally regulated phosphorylation of a conserved triple serine motif within the amino-terminal domain. In the phosphorylated state, Olig2 maintains antineural (i.e., promitotic) functions that are reflected in human glioma cells and in a genetically defined murine model of primary glioma.

Collaboration


Dive into the John A. Alberta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shwetal Mehta

St. Joseph's Hospital and Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge