Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Browne is active.

Publication


Featured researches published by John A. Browne.


Nature | 2002

Anhydrobiosis: Plant desiccation gene found in a nematode

John A. Browne; Alan Tunnacliffe; Ann M. Burnell

When subjected to drought conditions, some organisms enter a state of suspended animation known as anhydrobiosis, surviving for indefinite periods until rehydration allows them to resume normal metabolism. We have identified a gene in the anhydrobiotic nematode Aphelenchus avenae that is upregulated in response to desiccation stress and whose encoded protein shares sequence similarity with a late-embryonic gene that is induced in many plants when they are deprived of water. This finding suggests that animals and plants that undergo anhydrobiosis may use common protective strategies against dehydration, and provides a unifying insight into the mechanism of anhydrobiosis.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Eukaryotic Cell | 2004

Dehydration-Specific Induction of Hydrophilic Protein Genes in the Anhydrobiotic Nematode Aphelenchus avenae

John A. Browne; Katharine M. Dolan; Trevor A. Tyson; Kshamata Goyal; Alan Tunnacliffe; Ann M. Burnell

ABSTRACT Some organisms can survive exposure to extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living nematode Aphelenchus avenae can be induced to enter the anhydrobiotic state by exposure to a moderate reduction in relative humidity. During this preconditioning period, the nematode accumulates large amounts of the disaccharide trehalose, which is thought to be necessary, but not sufficient, for successful anhydrobiosis. To identify other adaptations that are required for anhydrobiosis, we developed a novel SL1-based mRNA differential display technique to clone genes that are upregulated by dehydration in A. avenae. Three such genes, Aav-lea-1, Aav-ahn-1, and Aav-glx-1, encode, respectively, a late embryogenesis abundant (LEA) group 3 protein, a novel protein that we named anhydrin, and the antioxidant enzyme glutaredoxin. Strikingly, the predicted LEA and anhydrin proteins are highly hydrophilic and lack significant secondary structure in the hydrated state. The dehydration-induced upregulation of Aav-lea-1 and Aav-ahn-1 was confirmed by Northern hybridization and quantitative PCR experiments. Both genes were also upregulated by an osmotic upshift, but not by cold, heat, or oxidative stress. Experiments to investigate the relationship between mRNA levels and protein expression for these genes are in progress. LEA proteins occur commonly in plants, accumulating during seed maturation and desiccation stress; the presence of a gene encoding an LEA protein in an anhydrobiotic nematode suggests that some mechanisms of coping with water loss are conserved between plants and animals.


The FASEB Journal | 2005

Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach

B. de Roos; Garry J. Rucklidge; Martin D. Reid; Karen Ross; Gary Duncan; María A. Navarro; José M. Arbonés-Mainar; Mario A. Guzmán-Garcı́a; Jesús Osada; John A. Browne; Christine E. Loscher; Helen M. Roche

Conjugated linoleic acids (CLA) affect atherogenesis, but mechanisms are not well understood. We explored how two isomers of CLA, cis9, trans11‐CLA and trans10, cis12‐CLA, affected lipid and glucose metabolism, as well as hepatic protein expression, in apolipoprotein E knockout mice. After 12 wk of intervention, plasma triglyceride, NEFA, and glucose concentrations were significantly higher in the trans10, cis12‐CLA group, whereas plasma triglyceride, NEFA, glucose, and insulin concentrations were significantly lower in the cis9, trans 11‐CLA group, compared with control mice consuming linoleic acid. Proteomics identified significant up‐ or down‐regulation of 113 liver cytosolic proteins by either CLA isomer. Principal component analysis revealed that the treatment effect of cis9, trans11‐CLA was mainly explained by the up‐regulation of different posttranslational forms of heat shock protein 70 kD. In contrast, the treatment effect of trans10, cis12‐CLA was mainly explained by up‐regulation of key enzymes in the gluconeogenic, β‐oxidation, and ketogenesic pathways. Correlation analysis again emphasized the divergent effects of both CLA isomers on different pathways, but also revealed a linkage between insulin resistance and increased levels of hepatic serotransferrin. Thus, our systems biology approach provided novel insights into the mechanisms by which individual CLA isomers differentially affect pathways related to atherogenesis, such as insulin resistance and inflammation. Baukje De Roos, Garry Rucklidge, Martin Reid, Karen Ross, Gary Duncan, Maria A. Navarro, Jose M. Arbones‐Mainar, Mario A. Guzman‐Garcia, Jesus Osada, John Browne, Christine E. Loscher, Helen M. Roche Divergent mechanisms of cis9, trans11‐ and trans10, cis12‐conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach. FASEB J. 19, 1–21 (2005)


Integrative and Comparative Biology | 2005

Molecular Anhydrobiology: Identifying Molecules Implicated in Invertebrate Anhydrobiosis

Kshamata Goyal; Laura J. Walton; John A. Browne; Ann M. Burnell; Alan Tunnacliffe

Abstract Studies in anhydrobiotic plants have defined many genes which are upregulated during desiccation, but comparable studies in invertebrates are at an early stage. To develop a better understanding of invertebrate anhydrobiosis, we have begun to characterise dehydration-inducible genes and their proteins in anhydrobiotic nematodes and bdelloid rotifers; this review emphasises recent findings with a hydrophilic nematode protein. Initial work with the fungivorous nematode Aphelenchus avenae led to the identification of two genes, both of which were markedly induced on slow drying (90–98% relative humidity, 24 hr) and also by osmotic stress, but not by heat or cold or oxidative stresses. The first of these genes encodes a novel protein we have named anhydrin; it is a small, basic polypeptide, with no counterparts in sequence databases, which is predicted to be natively unstructured and highly hydrophilic. The second is a member of the Group 3 LEA protein family; this and other families of LEA proteins are widely described in plants, where they are most commonly associated with the acquisition of desiccation tolerance in maturing seeds. Like anhydrin, the nematode LEA protein, Aav-LEA-1, is highly hydrophilic and a recombinant form has been shown to be unstructured in solution. In vitro functional studies suggest that Aav-LEA-1 is able to stabilise other proteins against desiccation-induced aggregation, which is in keeping with a role of LEA proteins in anhydrobiosis. In vivo, however, Aav-LEA-1 is apparently processed into smaller forms during desiccation. A processing activity was found in protein extracts of dehydrated, but not hydrated, nematodes; these shorter polypeptides are also active anti-aggregants and we hypothesise that processing LEA protein serves to increase the number of active molecules available to the dehydrating animal. Other LEA-like proteins are being identified in nematodes and it seems likely therefore that they will play a major role in the molecular anhydrobiology of invertebrates, as they are thought to do in plants.


BMC Genomics | 2010

Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training

Beatrice A. McGivney; Paul A. McGettigan; John A. Browne; A.C.O. Evans; Rita G. Fonseca; Brendan J. Loftus; Amanda J. Lohan; David E. MacHugh; Barbara A. Murphy; Lisa M. Katz; Emmeline W. Hill

BackgroundDigital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old).ResultsThe most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease.Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton.ConclusionExercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.


Scientific Reports | 2016

Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

Nigel Leyland; Joanna Podporska-Carroll; John A. Browne; Steven J. Hinder; Brid Quilty; Suresh C. Pillai

Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.


Physiological Genomics | 2012

Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau

Niamh Forde; Gillian Duffy; Paul A. McGettigan; John A. Browne; Jai Prakash Mehta; A. K. Kelly; Nadéra Mansouri-Attia; Olivier Sandra; Brendan J. Loftus; M.A. Crowe; Trudee Fair; James F. Roche; P. Lonergan; A.C.O. Evans

The aims of this study were to 1) identify the earliest transcriptional response of the bovine endometrium to the presence of the conceptus (using RNAseq), 2) investigate if these genes are regulated by interferon tau (IFNT) in vivo, and 3) determine if they are predictive of the pregnancy status of postpartum dairy cows. RNAseq identified 459 differentially expressed genes (DEGs) between pregnant and cyclic endometria on day 16. Quantitative real-time PCR analysis of selected genes revealed PARP12, ZNFX1, HERC6, IFI16, RNF213, and DDX58 expression increased in pregnant compared with cyclic endometria on day 16 and were directly upregulated by intrauterine infusion of IFNT in vivo for 2 h (P < 0.05). On day 13 following estrous endometrial expression of nine genes increased [ARHGAP1, MGC127874, LIMS2, TBC1D1, FBXL7, C25H16orf71, LOC507810, ZSWIM4, and one novel gene (ENSBTAT00000050193)] and seven genes decreased (SERBP1, SRGAP2, AL7A1, TBK1, F2RL2, MGC128929, and WBSCR17; P < 0.05) in pregnant compared with cyclic heifers. Of these DEGs, significant differences in expression between pregnant and cyclic endometria were maintained on day 16 for F2RL2, LIMS2, LOC507810, MGC127874, TBC1D1, WBSCR17, and ZSWIM4 (P < 0.05) both their expression was not directly regulated by IFNT in vivo. Analysis of the expression of selected interferon-stimulated genes in blood samples from postpartum dairy cows revealed a significant increase (P < 0.05) in expression of ZXFX1, PARP12, SAMD9, and HERC6 on day 18 following artificial insemination in cows subsequently confirmed pregnant compared with cyclic controls. In conclusion, RNAseq identified a number of novel pregnancy-associated genes in the endometrium of cattle during early pregnancy that are not regulated by IFNT in vivo. In addition, a number of genes that are directly regulated by short term exposure to IFNT in vivo are differentially expressed on day 18 following estrus detection in the blood of postpartum dairy cows depending on their pregnancy status.


Physiological Genomics | 2012

Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis

S.W. Walsh; Jai Prakash Mehta; Paul A. McGettigan; John A. Browne; Niamh Forde; Radwan M. Alibrahim; F.J. Mulligan; Brendan J. Loftus; M.A. Crowe; Daragh Matthews; M.G. Diskin; M. Mihm; A.C.O. Evans

Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n = 17) and lactating cows (n = 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n = 8) or 0.4 M (n = 11). Lactating cows and 0.4 M beef heifers had higher concentrations of β-hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.


Proteomics | 2009

Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet.

Baukje de Roos; Vanessa Rungapamestry; Karen Ross; Garry J. Rucklidge; Martin D. Reid; Gary Duncan; Graham W. Horgan; Sinead Toomey; John A. Browne; Christine E. Loscher; Kingston H. G. Mills; Helen M. Roche

The development of insulin resistance in the obese is associated with chronic, low‐grade inflammation. We aimed to identify novel links between obesity, insulin resistance and the inflammatory response by comparing C57BL/6 with type I interleukin‐1 receptor knockout (IL‐1RI−/−) mice, which are protected against diet‐induced insulin resistance. Mice were fed a high‐fat diet for 16 wk. Insulin sensitivity was measured and proteomic analysis was performed on adipose, hepatic and skeletal muscle tissues. Despite an equal weight gain, IL‐1RI−/− mice had lower plasma glucose, insulin and triacylglycerol concentrations, compared with controls, following dietary treatment. The higher insulin sensitivity in IL‐1RI−/− mice was associated with down‐regulation of antioxidant proteins and proteasomes in adipose tissue and hepatic soluble epoxide hydrolase, consistent with a compromised inflammatory response as well as increased glycolysis and decreased fatty acid β‐oxidation in their muscle. Their lower hepatic triacylglycerol concentrations may reflect decreased flux of free fatty acids to the liver, decreased hepatic fatty acid‐binding protein expression and decreased lipogenesis. Correlation analysis revealed down‐regulation of classical biomarkers of ER stress in their adipose tissue, suggesting that disruption of the IL‐1RI‐mediated inflammatory response may attenuate cellular stress, which was associated with significant protection from diet‐induced insulin resistance, independent of obesity.

Collaboration


Dive into the John A. Browne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Magee

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eamonn Gormley

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.C.O. Evans

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate E. Killick

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge