Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Chiorini is active.

Publication


Featured researches published by John A. Chiorini.


Proceedings of the National Academy of Sciences of the United States of America | 2000

Recombinant adeno-associated virus type 2, 4, and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system

Beverly L. Davidson; Colleen S. Stein; Jason A. Heth; Inês Martins; Robert M. Kotin; Todd A. Derksen; Joseph Zabner; Abdi Ghodsi; John A. Chiorini

Recombinant adeno-associated virus vectors based on serotype 2 (rAAV2) can direct transgene expression in the central nervous system (CNS), but it is not known how other rAAV serotypes perform as CNS gene transfer vectors. Serotypes 4 and 5 are distinct from rAAV2 and from each other in their capsid regions, suggesting that they may direct binding and entry into different cell types. In this study, we examined the tropisms and transduction efficiencies of beta-galactosidase-encoding vectors made from rAAV4 and rAAV5 compared with similarly designed rAAV2-based vectors. Injection of rAAV5 beta-galactosidase (betagal) or rAAV4betagal into the lateral ventricle resulted in stable transduction of ependymal cells, with approximately 10-fold more positive cells than in mice injected with rAAV2betagal. Major differences between the three vectors were revealed upon striatal injections. Intrastriatal injection of rAAV4betagal resulted again in striking ependyma-specific expression of transgene, with a notable absence of transduced cells in the parenchyma. rAAV2betagal and rAAV5betagal intrastriatal injections led to beta-gal-positive parenchymal cells, but, unlike rAAV2betagal, rAAV5betagal transduced both neurons and astrocytes. The number of transgene-positive cells in rAAV5betagal-injected brains was 130 and 5,000 times higher than in rAAV2betagal-injected brains at 3 and 15 wk, respectively. Moreover, transgene-positive cells were widely dispersed throughout the injected hemisphere in rAAV5betagal-transduced animals. Together, our data provide in vivo support for earlier in vitro work, suggesting that rAAV4 and rAAV5 gain cell entry by means of receptors distinct from rAAV2. These differences could be exploited to improve gene therapy for CNS disorders.


Journal of Virology | 2001

Adeno-Associated Virus Serotype 4 (AAV4) and AAV5 Both Require Sialic Acid Binding for Hemagglutination and Efficient Transduction but Differ in Sialic Acid Linkage Specificity

Nikola Kaludov; Kevin E. Brown; Robert W. Walters; Joseph Zabner; John A. Chiorini

ABSTRACT Adeno-associated virus serotype 4 (AAV4) and AAV5 have different tropisms compared to AAV2 and to each other. We recently reported that α2-3 sialic acid is required for AAV5 binding and transduction. In this study, we characterized AAV4 binding and transduction and found it also binds sialic acid, but the specificity is significantly different from AAV5. AAV4 can hemagglutinate red blood cells from several species, whereas AAV5 hemagglutinates only rhesus monkey red blood cells. Treatment of red blood cells with trypsin inhibited hemagglutination for both AAV4 and AAV5, suggesting that the agglutinin is a protein. Treatment of Cos and red blood cells with neuraminidases also indicated that AAV4 bound α2-3 sialic acid. However, resialylation experiments with neuraminidase-treated red blood cells demonstrated that AAV4 binding required α2–3 O-linked sialic acid, whereas AAV5 required N-linked sialic acid. Similarly, resialylation of sialic acid-deficient CHO cells supported this same conclusion. The difference in linkage specificity for AAV4 and AAV5 was confirmed by binding and transduction experiments with cells incubated with either N-linked or O-linked inhibitors of glycosylation. Furthermore, AAV4 transduction was only blocked with soluble α2-3 sialic acid, whereas AAV5 could be blocked with either α2–3 or α2-6 sialic acid. These results suggest that AAV4 and AAV5 require different sialic acid-containing glycoproteins for binding and transduction of target cells and they further explain the different tropism of AAV4 and AAV5.


Journal of Biological Chemistry | 2001

Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer.

Robert W. Walters; Su Min P. Yi; Shaf Keshavjee; Kevin E. Brown; Michael J. Welsh; John A. Chiorini; Joseph Zabner

Recombinant adeno-associated viruses (AAV) are promising gene therapy vectors. Whereas AAV serotype 2-mediated gene transfer to muscle has partially replaced factor IX deficiency in hemophilia patients, its ability to mediate gene transfer to the lungs for cystic fibrosis is hindered by lack of apical receptors. However, AAV serotype 5 infects human airway epithelia from the lumenal surface. We found that in contrast to AAV2, the apical membrane of airway epithelia contains abundant high affinity receptors for AAV5. Binding and gene transfer with AAV5 was abolished by genetic or enzymatic removal of sialic acid from the cell surface. Furthermore, binding and gene transfer to airway epithelia was competed by lectins that specifically bind 2,3-linked sialic acid. These observations suggest that 2,3-linked sialic acid is either a receptor for AAV5 or it is a necessary component of a receptor complex. Further elucidation of the receptor for this virus should enhance understanding of parvovirus biology and expand the therapeutic targets for AAV vectors.


Journal of Virology | 2000

Adeno-Associated Virus Type 5 (AAV5) but Not AAV2 Binds to the Apical Surfaces of Airway Epithelia and Facilitates Gene Transfer

Joseph Zabner; Michael P. Seiler; Robert W. Walters; Robert M. Kotin; Wendy Fulgeras; Beverly L. Davidson; John A. Chiorini

ABSTRACT In the genetic disease cystic fibrosis, recombinant adeno-associated virus type 2 (AAV2) is being investigated as a vector to transfer CFTR cDNA to airway epithelia. However, earlier work has shown that the apical surface of human airway epithelia is resistant to infection by AAV2, presumably as a result of a lack of heparan sulfate proteoglycans on the apical surface. This inefficiency can be overcome by increasing the amount of vector or by increasing the incubation time. However, these interventions are not very practical for translation into a therapeutic airway-directed vector. Therefore, we examined the efficiency of other AAV serotypes at infecting human airway epithelia. When applied at low multiplicity of infection to the apical surface of differentiated airway epithelia we found that a recombinant AAV5 bound and mediated gene transfer 50-fold more efficiently than AAV2. Furthermore, in contrast to AAV2, AAV5-mediated gene transfer was not inhibited by soluble heparin. Recombinant AAV5 was also more efficient than AAV2 in transferring β-galactosidase cDNA to murine airway and alveolar epithelia in vivo. These data suggest that AAV5-derived vectors bind and mediate gene transfer to human and murine airway epithelia, and the tropism of AAV5 may be useful to target cells that are not permissive for AAV2.


Nature Medicine | 2003

Identification of PDGFR as a receptor for AAV-5 transduction.

Giovanni Di Pasquale; Beverly L. Davidson; Colleen S. Stein; Inês Martins; Dominic A. Scudiero; Anne Monks; John A. Chiorini

Understanding the process of vector transduction has important implications for the application and optimal use of a vector system for human gene therapy. Recent studies with vectors based on adeno-associated virus type 5 (AAV-5) have shown utility of this vector system in the lung, central nervous system, muscle and eye. To understand the natural tropism of this virus and to identify proteins necessary for AAV-5 transduction, we characterized 43 cell lines as permissive or nonpermissive for AAV-5 transduction and compared the gene expression profiles derived from cDNA microarray analyses of those cell lines. A statistically significant correlation was observed between expression of the platelet-derived growth factor receptor (PDGFR-α-polypeptide) and AAV-5 transduction. Subsequent experiments confirmed the role of PDGFR-α and PDGFR-β as receptors for AAV-5. The tropism of AAV-5 in vivo also correlated with the expression pattern of PDGFR-α.


Archives of Virology | 2014

The family Parvoviridae

Susan F. Cotmore; Mavis Agbandje-McKenna; John A. Chiorini; D. V. Mukha; David J. Pintel; Jianming Qiu; Maria Söderlund-Venermo; Peter Tattersall; Peter Tijssen; Derek Gatherer; Andrew J. Davison

A set of proposals to rationalize and extend the taxonomy of the family Parvoviridae is currently under review by the International Committee on Taxonomy of Viruses (ICTV). Viruses in this family infect a wide range of hosts, as reflected by the longstanding division into two subfamilies: the Parvovirinae, which contains viruses that infect vertebrate hosts, and the Densovirinae, encompassing viruses that infect arthropod hosts. Using a modified definition for classification into the family that no longer demands isolation as long as the biological context is strong, but does require a near-complete DNA sequence, 134 new viruses and virus variants were identified. The proposals introduce new species and genera into both subfamilies, resolve one misclassified species, and improve taxonomic clarity by employing a series of systematic changes. These include identifying a precise level of sequence similarity required for viruses to belong to the same genus and decreasing the level of sequence similarity required for viruses to belong to the same species. These steps will facilitate recognition of the major phylogenetic branches within genera and eliminate the confusion caused by the near-identity of species and viruses. Changes to taxon nomenclature will establish numbered, non-Latinized binomial names for species, indicating genus affiliation and host range rather than recapitulating virus names. Also, affixes will be included in the names of genera to clarify subfamily affiliation and reduce the ambiguity that results from the vernacular use of “parvovirus” and “densovirus” to denote multiple taxon levels.


Proceedings of the National Academy of Sciences of the United States of America | 2011

T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus

Andrew S. Kondratowicz; Nicholas J. Lennemann; Patrick L. Sinn; Robert A. Davey; Catherine L. Hunt; Sven Moller-Tank; David K. Meyerholz; Paul D. Rennert; Robert F. Mullins; Melinda A. Brindley; Lindsay M. Sandersfeld; Kathrina Quinn; Melodie L. Weller; Paul B. McCray; John A. Chiorini; Wendy Maury

The glycoproteins (GP) of enveloped viruses facilitate entry into the host cell by interacting with specific cellular receptors. Despite extensive study, a cellular receptor for the deadly filoviruses Ebolavirus and Marburgvirus has yet to be identified and characterized. Here, we show that T-cell Ig and mucin domain 1 (TIM-1) binds to the receptor binding domain of the Zaire Ebola virus (EBOV) glycoprotein, and ectopic TIM-1 expression in poorly permissive cells enhances EBOV infection by 10- to 30-fold. Conversely, reduction of cell-surface expression of TIM-1 by RNAi decreased infection of highly permissive Vero cells. TIM-1 expression within the human body is broader than previously appreciated, with expression on mucosal epithelia from the trachea, cornea, and conjunctiva—tissues believed to be important during in vivo transmission of filoviruses. Recognition that TIM-1 serves as a receptor for filoviruses on these mucosal epithelial surfaces provides a mechanistic understanding of routes of entry into the human body via inhalation of aerosol particles or hand-to-eye contact. ARD5, a monoclonal antibody against the IgV domain of TIM-1, blocked EBOV binding and infection, suggesting that antibodies or small molecules directed against this cellular receptor may provide effective filovirus antivirals.


Neuroreport | 2000

Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors.

Joseph Martin Alisky; Stephanie M. Hughes; Sybille L. Sauter; Douglas J. Jolly; Thomas W. Dubensky; Patrick D. Staber; John A. Chiorini; Beverly L. Davidson

Our data demonstrate that vectors derived from recombinant feline immunodeficiency virus (rFIV) and adeno-associated virus type 5 (rAAV5) transduce cerebellar cells following direct injection into the cerebellar lobules of mice. Both recombinant viruses mediated gene transfer predominantly to neurons, with up to 2500 and 1500 Purkinje cells transduced for rAAV5 or rFIV-based vectors, respectively. The vectors also transduced stellate, basket and Golgi neurons, with occasional transduction of granule cells and deep cerebellar nuclei. rAAV5 also spread outside the cerebellum to the inferior colliculus and ventricular epithelium, while rFIV demonstrated the ability to undergo retrograde transport to the physically close lateral vestibular nuclei. Thus, AAV5 and FIV-based vectors show promise for targeting neurons affected in the hereditary spinocerebellar ataxias. These vectors could be important tools for unraveling the pathophysiology of these disorders, or in testing factors which may promote neuronal survival.


Human Gene Therapy | 2002

Scalable Purification of Adeno-Associated Virus Type 2, 4, or 5 Using Ion-Exchange Chromatography

Nikola Kaludov; Beverly Handelman; John A. Chiorini

The availability of high-titer, high-purity, adeno-associated virus type 2 (AAV2) stocks has dramatically increased our understanding of this virus and its utility as a gene transfer vector. Current methods of purification take advantage of the stable interaction of AAV2 with heparin sulfate. This affinity chromatography, however, is not useful for purifying AAV4 and AAV5, because these serotypes lack heparin-binding activity. We have developed simple ion exchange high-performance liquid chromatography (HPLC) method for purifying different AAV serotypes that does not rely on the affinity of the viruses for heparin. The protocol is fast, efficient, and yields highly infectious material. Analysis of the highly purified virus indicated that more than 90% of the particles contained genomes and were more active than virus purified by cesium chloride (CsCl) gradient purification. This procedure is scalable and can easily be streamlined for large-scale production of recombinant adeno-associated virus (rAAV), regardless of the serotype. Ultimately, the new purification method will further the characterization of rAAV of different serotypes as vectors for gene therapy applications.


Journal of Virology | 2006

Structurally Mapping the Diverse Phenotype of Adeno-Associated Virus Serotype 4

Lakshmanan Govindasamy; Eric Padron; Robert McKenna; Nicholas Muzyczka; Nikola Kaludov; John A. Chiorini; Mavis Agbandje-McKenna

ABSTRACT The adeno-associated viruses (AAVs) can package and deliver foreign DNA into cells for corrective gene delivery applications. The AAV serotypes have distinct cell binding, transduction, and antigenic characteristics that have been shown to be dictated by the capsid viral protein (VP) sequence. To understand the contribution of capsid structure to these properties, we have determined the crystal structure of AAV serotype 4 (AAV4), one of the most diverse serotypes with respect to capsid protein sequence and antigenic reactivity. Structural comparison of AAV4 to AAV2 shows conservation of the core β strands (βB to βI) and helical (αA) secondary structure elements, which also exist in all other known parvovirus structures. However, surface loop variations (I to IX), some containing compensating structural insertions and deletions in adjacent regions, result in local topological differences on the capsid surface. These include AAV4 having a deeper twofold depression, wider and rounder protrusions surrounding the threefold axes, and a different topology at the top of the fivefold channel from that of AAV2. Also, the previously observed “valleys” between the threefold protrusions, containing AAV2s heparin binding residues, are narrower in AAV4. The observed differences in loop topologies at subunit interfaces are consistent with the inability of AAV2 and AAV4 VPs to combine for mosaic capsid formation in efforts to engineer novel tropisms. Significantly, all of the surface loop variations are associated with amino acids reported to affect receptor recognition, transduction, and anticapsid antibody reactivity for AAV2. This observation suggests that these capsid regions may also play similar roles in the other AAV serotypes.

Collaboration


Dive into the John A. Chiorini's collaboration.

Top Co-Authors

Avatar

Changyu Zheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce J. Baum

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Giovanni Di Pasquale

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sandra Afione

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hongen Yin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ana P. Cotrim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul P. Tak

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Beverly L. Davidson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Brian Safer

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge