Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Dec is active.

Publication


Featured researches published by John A. Dec.


44th AIAA Aerospace Sciences Meeting and Exhibit | 2006

An Approximate Ablative Thermal Protection System Sizing Tool for Entry System Design

John A. Dec; Robert D. Braun

A computer tool to perform entry vehicle ablative thermal protection systems sizing has been developed. Two options for calculating the thermal response are incorporated into the tool. One, an industry-standard, high-fidelity ablation and thermal response program was integrated into the tool, making use of simulated trajectory data to calculate its boundary conditions at the ablating surface. Second, an approximate method that uses heat of ablation data to estimate heat shield recession during entry has been coupled to a one-dimensional finite-difference calculation that calculates the in-depth thermal response. The in-depth solution accounts for material decomposition, but does not account for pyrolysis gas energy absorption through the material. Engineering correlations are used to estimate stagnation point convective and radiative heating as a function of time. The sizing tool calculates recovery enthalpy, wall enthalpy, surface pressure, and heat transfer coefficient. Verification of this tool is performed by comparison to past thermal protection system sizings for the Mars Pathfinder and Stardust entry systems and calculations are performed for an Apollo capsule entering the atmosphere at lunar and Mars return speeds.


Journal of Spacecraft and Rockets | 2007

Entry System Options for Human Return from the Moon and Mars

Zachary R. Putnam; Robert D. Braun; Reuben R. Rohrschneider; John A. Dec

Earth entry system options for human return missions from the Moon and Mars were analyzed and compared to identify trends among the configurations and trajectory options and to facilitate informed decision making at the exploration architecture level. Entry system options included ballistic, lifting capsule, biconic, and lifting body configurations with direct entry and aerocapture trajectories. For each configuration and trajectory option, the thermal environment, deceleration environment, crossrange and downrange performance, and entry corridor were assessed. In addition, the feasibility of a common vehicle for lunar and Mars return was investigated. The results show that a low lift-to-drag ratio (L/D = 0.3) vehicle provides sufficient performance for both lunar and Mars return missions while providing the following benefits: excellent packaging efficiency, low structural and TPS mass fraction, ease of launch vehicle integration, and system elegance and simplicity. Numerous configuration options exist that achieve this L/D.


AIAA/AAS Astrodynamics Specialist Conference and Exhibit | 2002

Thermal Analysis and Correlation of the Mars Odyssey Spacecraft's Solar Array During Aerobraking Operations

John A. Dec; Joseph F. Gasbarre; Benjamin E. George

The Mars Odyssey spacecraft made use of multipass aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking operations provided an opportunity to apply advanced thermal analysis techniques to predict the temperature of the spacecrafts solar array for each drag pass. Odyssey telemetry data was used to correlate the thermal model. The thermal analysis was tightly coupled to the flight mechanics, aerodynamics, and atmospheric modeling efforts being performed during operations. Specifically, the thermal analysis predictions required a calculation of the spacecrafts velocity relative to the atmosphere, a prediction of the atmospheric density, and a prediction of the heat transfer coefficients due to aerodynamic heating. Temperature correlations were performed by comparing predicted temperatures of the thermocouples to the actual thermocouple readings from the spacecraft. Time histories of the spacecraft relative velocity, atmospheric density, and heat transfer coefficients, calculated using flight accelerometer and quaternion data, were used to calculate the aerodynamic heating. During aerobraking operations, the correlations were used to continually update the thermal model, thus increasing confidence in the predictions. This paper describes the thermal analysis that was performed and presents the correlations to the flight data.


Journal of Spacecraft and Rockets | 2005

Aeroheating Thermal Model Correlation for Mars Global Surveyor Solar Array

Ruth M. Amundsen; John A. Dec; Benjamin E. George

The Mars Global Surveyor (MGS) spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time-dependent aerodynamic heating. Also, the thermal model itself needed to capture accurately the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar-cell assembly properties, and adding detail to radiation and heat-flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar-array aeroheating analysis, which were used during on-orbit operations.


36th AIAA Thermophysics Conference | 2003

A Thermal Analysis Approach for the Mars Odyssey Spacecraft's Solar Array

John A. Dec; Ruth M. Amundsen

There are numerous challenges associated with placing a spacecraft in orbit around Mars. Often. trades must be made such as the mass of the payload and the amount of fuel that can be carried. One technique employed to more efficiently place a spacecraft in orbit while maximizing payload mass (minimizing fuel use) is aerobraking. The Mars Odyssey Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking introduces its own unique challenges, in particular, predicting the thermal response of the spacecraft and its components during each aerobraking drag pass. This paper describes the methods used to perform aerobraking thermal analysis using finite element thermal models of the Mars Odyssey Spacecrafts solar array. To accurately model the complex behavior during aerobraking, the thermal analysis must be tightly coupled to the spatially varying, time dependent aerodynamic heating analysis. Also, to properly represent the temperatures prior to the start of the drag pass. the model must include the orbital solar and planetary heat fluxes. It is critical that the thermal behavior be predicted accurately to maintain the solar array below its structural flight allowable temperature limit. The goal of this paper is to describe a thermal modeling method that was developed for this purpose.


international conference on evolvable systems | 2007

Thermal Modeling of the Mars Reconnaissance Orbiter 's Solar Panel and Instruments During Aerobraking

John A. Dec; Joseph F. Gasbarre; Ruth M. Amundsen

The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.


international conference on evolvable systems | 2007

Thermal Model Correlation for Mars Reconnaissance Orbiter

Ruth M. Amundsen; John A. Dec; Joseph F. Gasbarre

The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun. The data obtained from these maneuvers allowed the model to be well-correlated with regard to thermal mass, conductive connections, and solar response well before arrival at the planet. Correlation against flight data for both in-cruise maneuvers and drag passes was performed. Adjustments made to the model included orientation during the drag pass, solar flux, Martian surface temperature, through-array resistance, aeroheating gradient due to angle of attack, and aeroheating accommodation coefficient. Methods of correlation included comparing the model to flight temperatures, slopes, temperature deltas between sensors, and solar and planet direction vectors. Correlation and model accuracy over 400 aeroheating drag passes were determined, with overall model accuracy better than 5 C.


36th AIAA Thermophysics Conference | 2003

Aeroheating Thermal Model Correlation for Mars Global Surveyor (MGS) Solar Array

Ruth M. Amundsen; John A. Dec; Benjamin E. George

The Mars Global Surveyor (MGS) Spacecraft made use of aerobraking to gradually reduce its orbit period from a highly elliptical insertion orbit to its final science orbit. Aerobraking produces a high heat load on the solar arrays, which have a large surface area exposed to the airflow and relatively low mass. To accurately model the complex behavior during aerobraking, the thermal analysis needed to be tightly coupled to the spatially varying, time dependent aerodynamic heating. Also, the thermal model itself needed to accurately capture the behavior of the solar array and its response to changing heat load conditions. The correlation of the thermal model to flight data allowed a validation of the modeling process, as well as information on what processes dominate the thermal behavior. Correlation in this case primarily involved detailing the thermal sensor nodes, using as-built mass to modify material property estimates, refining solar cell assembly properties, and adding detail to radiation and heat flux boundary conditions. This paper describes the methods used to develop finite element thermal models of the MGS solar array and the correlation of the thermal model to flight data from the spacecraft drag passes. Correlation was made to data from four flight thermal sensors over three of the early drag passes. Good correlation of the model was achieved, with a maximum difference between the predicted model maximum and the observed flight maximum temperature of less than 5%. Lessons learned in the correlation of this model assisted in validating a similar model and method used for the Mars Odyssey solar array aeroheating analysis, which were used during onorbit operations.


52nd Aerospace Sciences Meeting | 2014

Flexible Thermal Protection System Physics-Based Modeling for Temperature Profile Predictions

Grant A. Rossman; Robert D. Braun; John A. Dec

Candidate material testing was performed on various Flexible Thermal Protection Systems (FTPS) layup configurations in an arc-jet ground test facility. A physics-based thermal model was created to predict the thermal-material response of each FTPS layup under arc-jet induced thermal loading. Initial thermal model temperature predictions of embedded thermocouples for FTPS test articles showed an unsatisfactory correlation to arcjet test data. The Levenberg-Marquardt (LM) inverse parameter estimation technique was implemented to reduce discrepancies between thermal model temperature predictions and experimental thermocouple temperature measurements by iteratively modifying FTPS thermal parameters within the model, such as thermal conductivity and specific heat. A formal parameter estimation methodology, previously applied for ablative TPS, is applied to this FTPS problem to improve understanding estimation behavior and LM errorminimization. Nominal, uncertainty, sensitivity, and inverse analysis are performed on scaled thermal inputs to provide insight on solution uniqueness and stability. This errorminimization technique is demonstrated on a previously flown FTPS layup configuration consisting of two outer fabric layers, two insulation layers, and one gas barrier layer. Results show that the LM method is a viable technique for inverse parameter estimation of FTPS thermal modeling problems.


42nd AIAA Thermophysics Conference | 2011

Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test

John A. Dec; Bernard Laub; Robert D. Braun

The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.

Collaboration


Dive into the John A. Dec's collaboration.

Top Co-Authors

Avatar

Robert D. Braun

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reuben R. Rohrschneider

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zachary R. Putnam

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin M. Kipp

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Grant William Wells

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert H. Tolson

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Robert Heath Tolson

National Institute of Aerospace

View shared research outputs
Researchain Logo
Decentralizing Knowledge