Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Gray is active.

Publication


Featured researches published by John A. Gray.


Brain Research Bulletin | 2001

Paradoxical trafficking and regulation of 5-HT2A receptors by agonists and antagonists

John A. Gray; Bryan L. Roth

5-Hydroxytryptamine(2A) (serotonin(2A), 5-HT(2A)) receptors are important for many physiologic processes including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. A large number of pharmaceutical agents mediate their actions, at least in part, by modulating the number and/or activity of 5-HT(2A) receptors. Drugs with action at 5-HT(2A) receptors are used in the treatment of many disorders, including schizophrenia, depression, and anxiety disorders. This review summarizes over two decades of research on the regulation of 5-HT(2A) receptors and provides a comprehensive review of numerous in vivo studies describing the paradoxical phenomenon of 5-HT(2A) receptor down-regulation by chronic treatment with antidepressants and antipsychotics. In addition, studies reporting antagonist-induced internalization of 5-HT(2A) receptors and other G protein-coupled receptors will be highlighted as a possible mechanism to explain this paradoxical down-regulation. Finally, a review of the cellular and molecular mechanisms that may be responsible for agonist-mediated desensitization and internalization of 5-HT(2A) receptors will be presented.


Neuron | 2010

Metabolic Control of Vesicular Glutamate Transport and Release

Narinobu Juge; John A. Gray; Hiroshi Omote; Takaaki Miyaji; Tsuyoshi Inoue; Chiaki Hara; Hisayuki Uneyama; Robert H. Edwards; Roger A. Nicoll; Yoshinori Moriyama

Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity.


Molecular Psychiatry | 2007

The pipeline and future of drug development in schizophrenia

John A. Gray; Bryan L. Roth

While the current antipsychotic medications have profoundly impacted the treatment of schizophrenia over the past 50 years, the newer atypical antipsychotics have not fulfilled initial expectations, and enormous challenges remain in long-term treatment of this debilitating disease. In particular, improved treatment of the negative symptoms and cognitive dysfunction in schizophrenia which greatly impact overall morbidity is needed. In this review we will briefly discuss the current pipeline of drugs for schizophrenia, outlining many of the strategies and targets currently under investigation for the development of new schizophrenia drugs. Many of these compounds have great potential as augmenting agents in the treatment of negative symptoms and cognition. In addition, we will highlight the importance of developing new paradigms for drug discovery in schizophrenia and call for an increased role of academic scientists in discovering and validating novel drug targets. Indeed, recent breakthroughs in genetic studies of schizophrenia are allowing for the development of hypothesis-driven approaches for discovering possible disease-modifying drugs for schizophrenia. Thus, this is an exciting and pivotal time for the development of truly novel approaches to drug development and treatment of complex disorders like schizophrenia.


Journal of Biological Chemistry | 2001

The Dynamin-dependent, Arrestin-independent Internalization of 5-Hydroxytryptamine 2A (5-HT2A) Serotonin Receptors Reveals Differential Sorting of Arrestins and 5-HT2A Receptors during Endocytosis

Anushree Bhatnagar; David L. Willins; John A. Gray; Jason Woods; Jeffrey L. Benovic; Bryan L. Roth

5-Hydroxytryptamine 2A (5-HT2A) receptors, a major site of action of clozapine and other atypical antipsychotic medications, are, paradoxically, internalized in vitro and in vivo by antagonists and agonists. The mechanisms responsible for this paradoxical regulation of 5-HT2A receptors are unknown. In this study, the arrestin and dynamin dependences of agonist- and antagonist-mediated internalization were investigated in live cells using green fluorescent protein (GFP)-tagged 5-HT2A receptors (SR2-GFP). Preliminary experiments indicated that GFP tagging of 5-HT2A receptors had no effect on either the binding affinities of several ligands or agonist efficacy. Likewise, both the native receptor and SR2-GFP were internalized via endosomes in vitro. Experiments with a dynamin dominant-negative mutant (dynamin K44A) demonstrated that both agonist- and antagonist-induced internalization were dynamin-dependent. By contrast, both the agonist- and antagonist-induced internalization of SR2-GFP were insensitive to three different arrestin (Arr) dominant-negative mutants (Arr-2 V53D, Arr-2-(319–418), and Arr-3-(284–409)). Interestingly, 5-HT2A receptor activation by agonists, but not antagonists, induced greater Arr-3 than Arr-2 translocation to the plasma membrane. Importantly, the agonist-induced internalization of 5-HT2A receptors was accompanied by differential sorting of Arr-2, Arr-3, and 5-HT2A receptors into distinct plasma membrane and intracellular compartments. The agonist-induced redistribution of Arr-2 and Arr-3 into intracellular vesicles and plasma membrane compartments distinct from those involved in 5-HT2A receptor internalization implies novel roles for Arr-2 and Arr-3 independent of 5-HT2A receptor internalization and desensitization.


The Journal of Neuroscience | 2007

Tyramine and Octopamine Independently Inhibit Serotonin-Stimulated Aversive Behaviors in Caenorhabditis elegans through Two Novel Amine Receptors

Rachel T. Wragg; Vera Hapiak; Sarah B. Miller; Gareth Harris; John A. Gray; Patricia R. Komuniecki; Richard Komuniecki

Biogenic amines modulate key behaviors in both vertebrates and invertebrates. In Caenorhabditis elegans, tyramine (TA) and octopamine (OA) inhibit aversive responses to 100%, but not dilute (30%) octanol. TA and OA also abolish food- and serotonin-dependent increases in responses to dilute octanol in wild-type but not tyra-3(ok325) and f14d12.6(ok371) null animals, respectively, suggesting that TA and OA modulated responses to dilute octanol are mediated by separate, previously uncharacterized, G-protein-coupled receptors. TA and OA are high-affinity ligands for TYRA-3 and F14D12.6, respectively, based on their pharmacological characterization after heterologous expression. f14d12.6::gfp is expressed in the ASHs, the neurons responsible for sensitivity to dilute octanol, and the sra-6-dependent expression of F14D12.6 in the ASHs is sufficient to rescue OA sensitivity in f14d12.6(ok371) null animals. In contrast, tyra-3::gfp appears not to be expressed in the ASHs, but instead in other neurons, including the dopaminergic CEP/ADEs. However, although dopamine (DA) also inhibits 5-HT-dependent responses to dilute octanol, TA still inhibits in dop-2; dop-1; dop-3 animals that do not respond to DA and cat-2(tm346) and Pdat-1::ICE animals that lack significant dopaminergic signaling, suggesting that DA is not an intermediate in TA inhibition. Finally, responses to TA and OA selectively desensitize after preexposure to the amines. Our data suggest that although tyraminergic and octopaminergic signaling yield identical phenotypes in these olfactory assays, they act independently through distinct receptors to modulate the ASH-mediated locomotory circuit and that C. elegans is a useful model to study the aminergic modulation of sensory-mediated locomotory behaviors.


Journal of Neurochemistry | 2008

Structure and Function of the Third Intracellular Loop of the 5-Hydroxytryptamine2A Receptor: The Third Intracellular Loop Is α-Helical and Binds Purified Arrestins

Edward I. Gelber; Wesley K. Kroeze; Bryan L. Roth; John A. Gray; Christine A. Sinar; Edward G. Hyde; Vsevolod V. Gurevich; Jeffrey L. Benovic

Abstract: Understanding the precise structure and function of the intracellular domains of G protein‐coupled receptors is essential for understanding how receptors are regulated, and how they transduce their signals from the extracellular milieu to intracellular sites. To understand better the structure and function of the intracellular domain of the 5‐hydroxytryptamine2A (5‐HT2A) receptor, a model Gαq‐coupled receptor, we overexpressed and purified to homogeneity the entire third intracellular loop (i3) of the 5‐HT2A receptor, a region previously implicated in G‐protein coupling. Circular dichroism spectroscopy of the purified i3 protein was consistent with α‐helical and β‐loop, ‐turn, and ‐sheet structure. Using random peptide phage libraries, we identified several arrestin‐like sequences as i3‐interacting peptides. We subsequently found that all three known arrestins (β‐arrestin, arrestin‐3, and visual arrestin) bound specifically to fusion proteins encoding the i3 loop of the 5‐HT2A receptor. Competition binding studies with synthetic and recombinant peptides showed that the middle portion of the i3 loop, and not the extreme N and C termini, was likely to be involved in i3‐arrestin interactions. Dual‐label immunofluorescence confocal microscopic studies of rat cortex indicated that many cortical pyramidal neurons coexpressed arrestins (β‐arrestin or arrestin‐3) and 5‐HT2A receptors, particularly in intracellular vesicles. Our results demonstrate (a) that the i3 loop of the 5‐HT2A receptor represents a structurally ordered domain composed of α‐helical and β‐loop, ‐turn, and ‐sheet regions, (b) that this loop interacts with arrestins in vitro, and is hence active, and (c) that arrestins are colocalized with 5‐HT2A receptors in vivo.


Neuroscience | 2003

The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro

Zongqi Xia; Sandra J. Hufeisen; John A. Gray; Bryan L. Roth

The 5-HT(2A) serotonin receptor represents an important molecular target for atypical antipsychotic drugs and for most hallucinogens. In the mammalian cerebral cortex, 5-HT(2A) receptors are enriched in pyramidal neurons, within which 5-HT(2A) receptors are preferentially sorted to the apical dendrites. In primary cortical cultures, 5-HT(2A) receptors are sorted to dendrites and not found in the axons of pyramidal neurons. We identified a sorting motif that mediates the preferential targeting of 5-HT(2A) receptors to the dendrites of cortical pyramidal neurons in vitro. We constructed green fluorescent protein-tagged 5-HT(2A) receptors wherein potential sorting motifs were disrupted, and subsequently employed either the Semliki Forest virus or calcium phosphate for the transient expression of recombinant 5-HT(2A) receptors in cultured cortical pyramidal neurons. Using dual-labeling immunofluorescent confocal microscopy, we quantified the axonal and dendritic sorting patterns of endogenous and recombinant 5-HT(2A) receptors. We discovered that disruption of the PDZ-binding domain of the 5-HT(2A) receptor greatly attenuates the dendritic targeting of 5-HT(2A) receptors without inappropriately sorting 5-HT(2A) receptors to axons. The PDZ-binding domain is therefore a necessary signal for the preferential targeting of the 5-HT(2A) receptor to the dendritic compartment of cultured cortical pyramidal neurons, the first such role ascribed to this protein-protein interaction motif of any G protein-coupled receptor.


Cell Reports | 2013

Activated CaMKII Couples GluN2B and Casein Kinase 2 to Control Synaptic NMDA Receptors

Antonio Sanz-Clemente; John A. Gray; Kyle A. Ogilvie; Roger A. Nicoll; Katherine W. Roche

Synaptic activity triggers a profound reorganization of the molecular composition of excitatory synapses. For example, NMDA receptors are removed from synapses in an activity- and calcium-dependent manner, via casein kinase 2 (CK2) phosphorylation of the PDZ ligand of the GluN2B subunit (S1480). However, how synaptic activity drives this process remains unclear because CK2 is a constitutively active kinase, which is not directly regulated by calcium. We show here that activated CaMKII couples GluN2B and CK2 to form a trimolecular complex and increases CK2-mediated phosphorylation of GluN2B S1480. In addition, a GluN2B mutant, which contains an insert to mimic the GluN2A sequence and cannot bind to CaMKII, displays reduced S1480 phosphorylation and increased surface expression. We find that although disrupting GluN2B/CaMKII binding reduces synapse number, it increases synaptic-GluN2B content. Therefore, the GluN2B/CaMKII association controls synapse density and PSD composition in an activity-dependent manner, including recruitment of CK2 for the removal of GluN2B from synapses.


The Journal of Neuroscience | 2015

Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

Ivar S. Stein; John A. Gray; Karen Zito

The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long-term depression (LTD) of synaptic strength. Here, we use two-photon glutamate uncaging and time-lapse imaging to show that non-ionotropic NMDAR signaling can drive shrinkage of dendritic spines, independent of NMDAR-mediated Ca2+ influx. Signaling through p38 MAPK was required for this activity-dependent spine shrinkage. Our results provide fundamental new insights into the signaling mechanisms that support experience-dependent changes in brain structure.


Cell Reports | 2012

SAP102 Mediates Synaptic Clearance of NMDA Receptors

Bo Shiun Chen; John A. Gray; Antonio Sanz-Clemente; Zhe Wei; Eleanor V. Thomas; Roger A. Nicoll; Katherine W. Roche

Membrane-associated guanylate kinases (MAGUKs) are the major family of scaffolding proteins at the postsynaptic density. The PSD-MAGUK subfamily, which includes PSD-95, PSD-93, SAP97, and SAP102, is well accepted to be primarily involved in the synaptic anchoring of numerous proteins, including N-methyl-D-aspartate receptors (NMDARs). Notably, the synaptic targeting of NMDARs depends on the binding of the PDZ ligand on the GluN2B subunit to MAGUK PDZ domains, as disruption of this interaction dramatically decreases NMDAR surface and synaptic expression. We recently reported a secondary interaction between SAP102 and GluN2B, in addition to the PDZ interaction. Here, we identify two critical residues on GluN2B responsible for the non-PDZ binding to SAP102. Strikingly, either mutation of these critical residues or knockdown of endogenous SAP102 can rescue the defective surface expression and synaptic localization of PDZ binding-deficient GluN2B. These data reveal an unexpected, nonscaffolding role for SAP102 in the synaptic clearance of GluN2B-containing NMDARs.

Collaboration


Dive into the John A. Gray's collaboration.

Top Co-Authors

Avatar

Bryan L. Roth

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anushree Bhatnagar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey L. Benovic

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jason Woods

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Zito

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Sanz-Clemente

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Beth Ann Compton-Toth

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge