Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Karas is active.

Publication


Featured researches published by John A. Karas.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A central role for venom in predation by Varanus komodoensis (Komodo Dragon) and the extinct giant Varanus (Megalania) priscus

Bryan G. Fry; Stephen Wroe; Wouter M. Teeuwisse; Matthias J.P. van Osch; Karen Moreno; Jeanette Ingle; Colin R. McHenry; Toni L. Ferrara; Phillip D. Clausen; Holger Scheib; Kelly L. Winter; Laura Greisman; Kim Roelants; Louise van der Weerd; Christofer J. Clemente; Eleni Giannakis; Wayne C. Hodgson; Sonja Luz; Paolo Martelli; Karthiyani Krishnasamy; Elazar Kochva; Hang Fai Kwok; Denis B. Scanlon; John A. Karas; Diane M Citron; Ellie J. C. Goldstein; Judith McNaughtan; Janette A Norman

The predatory ecology of Varanus komodoensis (Komodo Dragon) has been a subject of long-standing interest and considerable conjecture. Here, we investigate the roles and potential interplay between cranial mechanics, toxic bacteria, and venom. Our analyses point to the presence of a sophisticated combined-arsenal killing apparatus. We find that the lightweight skull is relatively poorly adapted to generate high bite forces but better adapted to resist high pulling loads. We reject the popular notion regarding toxic bacteria utilization. Instead, we demonstrate that the effects of deep wounds inflicted are potentiated through venom with toxic activities including anticoagulation and shock induction. Anatomical comparisons of V. komodoensis with V. (Megalania) priscus fossils suggest that the closely related extinct giant was the largest venomous animal to have ever lived.


Molecular Biology and Evolution | 2010

Novel Venom Proteins Produced by Differential Domain-Expression Strategies in Beaded Lizards and Gila Monsters (genus Heloderma)

Bryan G. Fry; Kim Roelants; Kelly L. Winter; Wayne C. Hodgson; Laura Griesman; Hang Fai Kwok; Denis B. Scanlon; John A. Karas; Chris Shaw; Lily Wong; Janette A Norman

The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.


Inorganic Chemistry | 2010

Versatile New Bis(thiosemicarbazone) Bifunctional Chelators: Synthesis, Conjugation to Bombesin(7−14)-NH2, and Copper-64 Radiolabeling

Brett M. Paterson; John A. Karas; Denis B. Scanlon; Jonathan M. White; Paul S. Donnelly

New bifunctional derivatives of diacetyl-bis(4-methylthiosemicarbazone) (H(2)atsm) have been prepared by a selective transamination reaction of a new dissymmetric bis(thiosemicarbazone) precursor H(2)L(1). The new derivatives contain an aliphatic carboxylic acid (H(2)L(2) and H(2)L(3)), t-butyl carbamate (H(2)L(4)), or ammonium ion (H(2)L(5)) functional group. The new ligands and copper(II) complexes have been characterized by NMR spectroscopy, mass spectrometry, and microanalysis. The complex Cu(II)(L(4)) was structurally characterized by X-ray crystallography and shows the metal center to be in an N(2)S(2) distorted square planar coordination geometry. Electrochemical measurements show that the copper(II) complexes undergo a reversible reduction attributable to a Cu(II)/Cu(I) process. The ligands and the copper(II) complexes featuring a carboxylic acid functional group have been conjugated to the tumor targeting peptide bombesin(7-14)-NH(2). The bifunctional peptide conjugates were radiolabeled with copper-64 in the interest of developing new positron emission tomography (PET) imaging agents. The conjugates were radiolabeled with copper-64 rapidly in high radiochemical purity (>95%) at room temperature under mild conditions and were stable in a cysteine and histidine challenge study.


Journal of Biological Chemistry | 2009

Rapid Optimization of a Peptide Inhibitor of Malaria Parasite Invasion by Comprehensive N-Methyl Scanning

Karen S. Harris; Joanne L. Casey; Andrew M. Coley; John A. Karas; Jennifer K. Sabo; Yen Yee Tan; Olan Dolezal; Raymond S. Norton; Andrew B. Hughes; Denis B. Scanlon; Michael Foley

Apical membrane antigen 1 (AMA1) of the malaria parasite Plasmodium falciparum has been implicated in the invasion of host erythrocytes and is an important vaccine candidate. We have previously described a 20-residue peptide, R1, that binds to AMA1 and subsequently blocks parasite invasion. Because this peptide appears to target a site critical for AMA1 function, it represents an important lead compound for anti-malarial drug development. However, the effectiveness of this peptide inhibitor was limited to a subset of parasite isolates, indicating a requirement for broader strain specificity. Furthermore, a barrier to the utility of any peptide as a potential therapeutic is its susceptibility to rapid proteolytic degradation. In this study, we sought to improve the proteolytic stability and AMA1 binding properties of the R1 peptide by systematic methylation of backbone amides (N-methylation). The inclusion of a single N-methyl group in the R1 peptide backbone dramatically increased AMA1 affinity, bioactivity, and proteolytic stability without introducing global structural alterations. In addition, N-methylation of multiple R1 residues further improved these properties. Therefore, we have shown that modifications to a biologically active peptide can dramatically enhance activity. This approach could be applied to many lead peptides or peptide therapeutics to simultaneously optimize a number of parameters.


Molecular & Cellular Proteomics | 2010

Functional and Structural Diversification of the Anguimorpha Lizard Venom System

Bryan G. Fry; Kelly L. Winter; Janette A Norman; Kim Roelants; Rob J.A. Nabuurs; Matthias J.P. van Osch; Wouter M. Teeuwisse; Louise van der Weerd; Judith McNaughtan; Hang Fai Kwok; Holger Scheib; Laura Greisman; Elazar Kochva; Laurence J. Miller; Fan Gao; John A. Karas; Denis B. Scanlon; Feng Lin; Sanjaya Kuruppu; Chris Shaw; Lily Wong; Wayne C. Hodgson

Venom has only been recently discovered to be a basal trait of the Anguimorpha lizards. Consequently, very little is known about the timings of toxin recruitment events, venom protein molecular evolution, or even the relative physical diversifications of the venom system itself. A multidisciplinary approach was used to examine the evolution across the full taxonomical range of this ∼130 million-year-old clade. Analysis of cDNA libraries revealed complex venom transcriptomes. Most notably, three new cardioactive peptide toxin types were discovered (celestoxin, cholecystokinin, and YY peptides). The latter two represent additional examples of convergent use of genes in toxic arsenals, both having previously been documented as components of frog skin defensive chemical secretions. Two other novel venom gland-overexpressed modified versions of other protein frameworks were also recovered from the libraries (epididymal secretory protein and ribonuclease). Lectin, hyaluronidase, and veficolin toxin types were sequenced for the first time from lizard venoms and shown to be homologous to the snake venom forms. In contrast, phylogenetic analyses demonstrated that the lizard natriuretic peptide toxins were recruited independently of the form in snake venoms. The de novo evolution of helokinestatin peptide toxin encoding domains within the lizard venom natriuretic gene was revealed to be exclusive to the helodermatid/anguid subclade. New isoforms were sequenced for cysteine-rich secretory protein, kallikrein, and phospholipase A2 toxins. Venom gland morphological analysis revealed extensive evolutionary tinkering. Anguid glands are characterized by thin capsules and mixed glands, serous at the bottom of the lobule and mucous toward the apex. Twice, independently this arrangement was segregated into specialized serous protein-secreting glands with thick capsules with the mucous lobules now distinct (Heloderma and the Lanthanotus/Varanus clade). The results obtained highlight the importance of utilizing evolution-based search strategies for biodiscovery and emphasize the largely untapped drug design and development potential of lizard venoms.


Inorganic Chemistry | 2011

Macrobicyclic cage amine ligands for copper radiopharmaceuticals: A single bivalent cage amine containing two Lys3-bombesin targeting peptides

Michelle T. Ma; Margaret S. Cooper; Rowena L. Paul; Karen Shaw; John A. Karas; Denis B. Scanlon; Jonathan M. White; Philip J. Blower; Paul S. Donnelly

The synthesis of new cage amine macrobicyclic ligands with pendent carboxylate functional groups designed for application in copper radiopharmaceuticals is described. Reaction of [Cu((NH(2))(2)sar)](2+) (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) with either succinic or glutaric anhydride results in selective acylation of the primary amine atoms of [Cu((NH(2))(2)sar)](2+) to give derivatives with either one or two aliphatic carboxylate functional groups separated from the cage amine framework by either a four- or five-atom linker. The Cu(II) serves to protect the secondary amine nitrogen atoms from acylation, and can be removed to give the free ligands. The newly appended carboxylate functional groups can be used as sites of attachment for cancer-targeting peptides such as Lys(3)-bombesin. The synthesis of the first dimeric sarcophagine-peptide conjugate, possessing two Lys(3)-bombesin peptides tethered to a single cage amine, is presented. This species has been radiolabeled with copper-64 at ambient temperature and there is minimal dissociation of Cu(II) from the conjugate even after two days of incubation in human serum.


Chemical Communications | 2009

A new bifunctional chelator for copper radiopharmaceuticals

Michelle T. Ma; John A. Karas; Jonathan M. White; Denis B. Scanlon; Paul S. Donnelly

A new sarcophagine cage amine ligand with a pendent carboxylate functional group has been synthesised; the ligand has been conjugated to tumour targeting peptides ([Tyr3]-octreotate and [Lys3]-bombesin) and the conjugates radiolabelled with copper-64.


Journal of Biological Chemistry | 2012

Modulation of Conotoxin Structure and Function Is Achieved through a Multienzyme Complex in the Venom Glands of Cone Snails

Helena Safavi-Hemami; Dhana G. Gorasia; Andrew M. Steiner; Nicholas A. Williamson; John A. Karas; Joanna Gajewiak; Baldomero M. Olivera; Grzegorz Bulaj; Anthony W. Purcell

Background: Conotoxins can be utilized to investigate enzyme-assisted folding of disulfide-rich peptides. Results: Various ER-resident cone snail enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation by reconfiguring disulfide connectivities. Conclusion: The folding of conotoxins is a tightly regulated multienzyme-assisted process. Significance: Modulation of the conformation of conotoxins increases their molecular and functional diversity. The oxidative folding of large polypeptides has been investigated in detail; however, comparatively little is known about the enzyme-assisted folding of small, disulfide-containing peptide substrates. To investigate the concerted effect of multiple enzymes on the folding of small disulfide-rich peptides, we sequenced and expressed protein-disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase, and immunoglobulin-binding protein (BiP) from Conus venom glands. Conus PDI was shown to catalyze the oxidation and reduction of disulfide bonds in two conotoxins, α-GI and α-ImI. Oxidative folding rates were further increased in the presence of Conus PPI with the maximum effect observed in the presence of both enzymes. In contrast, Conus BiP was only observed to assist folding in the presence of microsomes, suggesting that additional co-factors were involved. The identification of a complex between BiP, PDI, and nascent conotoxins further suggests that the folding and assembly of conotoxins is a highly regulated multienzyme-assisted process. Unexpectedly, all three enzymes contributed to the folding of the ribbon isomer of α-ImI. Here, we identify this alternative disulfide-linked species in the venom of Conus imperialis, providing the first evidence for the existence of a “non-native” peptide isomer in the venom of cone snails. Thus, ER-resident enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation and function by reconfiguring disulfide connectivities. This study has evaluated the role of a number of ER-resident enzymes in the folding of conotoxins, providing novel insights into the enzyme-guided assembly of these small, disulfide-rich peptides.


Journal of Biological Chemistry | 2011

Embryonic Toxin Expression in the Cone Snail Conus victoriae: PRIMED TO KILL OR DIVERGENT FUNCTION?*

Helena Safavi-Hemami; William A. Siero; Zhihe Kuang; Nicholas A. Williamson; John A. Karas; Louise R. Page; David L. Macmillan; Brid P Callaghan; Shiva N. Kompella; David J. Adams; Raymond S. Norton; Anthony W. Purcell

Predatory marine cone snails (genus Conus) utilize complex venoms mainly composed of small peptide toxins that target voltage- and ligand-gated ion channels in their prey. Although the venoms of a number of cone snail species have been intensively profiled and functionally characterized, nothing is known about the initiation of venom expression at an early developmental stage. Here, we report on the expression of venom mRNA in embryos of Conus victoriae and the identification of novel α- and O-conotoxin sequences. Embryonic toxin mRNA expression is initiated well before differentiation of the venom gland, the organ of venom biosynthesis. Structural and functional studies revealed that the embryonic α-conotoxins exhibit the same basic three-dimensional structure as the most abundant adult toxin but significantly differ in their neurological targets. Based on these findings, we postulate that the venom repertoire of cone snails undergoes ontogenetic changes most likely reflecting differences in the biotic interactions of these animals with their prey, predators, or competitors. To our knowledge, this is the first study to show toxin mRNA transcripts in embryos, a finding that extends our understanding of the early onset of venom expression in animals and may suggest alternative functions of peptide toxins during development.


Chemistry: A European Journal | 2014

2-Nitroveratryl as a Photocleavable Thiol-Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin

John A. Karas; Denis B. Scanlon; Briony E. Forbes; Irina Vetter; Richard J. Lewis; James Gardiner; Frances Separovic; John D. Wade; Mohammed Akhter Hossain

Chemical synthesis of peptides can allow the option of sequential formation of multiple cysteines through exploitation of judiciously chosen regioselective thiol-protecting groups. We report the use of 2-nitroveratryl (oNv) as a new orthogonal group that can be cleaved by photolysis under ambient conditions. In combination with complementary S-pyridinesulfenyl activation, disulfide bonds are formed rapidly in situ. The preparation of Fmoc-Cys(oNv)-OH is described together with its use for the solid-phase synthesis of complex cystine-rich peptides, such as insulin.

Collaboration


Dive into the John A. Karas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Wade

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Akhter Hossain

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Tailhades

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Nitin A. Patil

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge