Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Montenieri is active.

Publication


Featured researches published by John A. Montenieri.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics

Rebecca J. Eisen; Scott W. Bearden; Aryn P. Wilder; John A. Montenieri; Michael F. Antolin; Kenneth L. Gage

Plague is a highly virulent disease believed to have killed millions during three historic human pandemics. Worldwide, it remains a threat to humans and is a potential agent of bioterrorism. Dissemination of Yersinia pestis, the etiological agent of plague, by blocked fleas has been the accepted paradigm for flea-borne transmission. However, this mechanism, which requires a lengthy extrinsic incubation period before a short infectious window often followed by death of the flea, cannot sufficiently explain the rapid rate of spread that typifies plague epidemics and epizootics. Inconsistencies between the expected rate of spread by blocked rat fleas and that observed during the Black Death has even caused speculation that plague was not the cause of this medieval pandemic. We used the primary vector to humans in North America, Oropsylla montana, which rarely becomes blocked, as a model for studying alternative flea-borne transmission mechanisms. Our data revealed that, in contrast to the classical blocked flea model, O. montana is immediately infectious, transmits efficiently for at least 4 d postinfection (early phase) and may remain infectious for a long time because the fleas do not suffer block-induced mortality. These factors match the criteria required to drive plague epizootics as defined by recently published mathematical models. The scenario of efficient early-phase transmission by unblocked fleas described in our study calls for a paradigm shift in concepts of how Y. pestis is transmitted during rapidly spreading epizootics and epidemics, including, perhaps, the Black Death.


Journal of Medical Entomology | 2003

Detection of Novel Bartonella Strains and Yersinia pestis in Prairie Dogs and Their Fleas (Siphonaptera: Ceratophyllidae and Pulicidae) Using Multiplex Polymerase Chain Reaction

Heather L. Stevenson; Ying Bai; Michael Y. Kosoy; John A. Montenieri; Jennifer L. Lowell; May C. Chu; Kenneth L. Gage

Abstract We developed a multiplex polymerase chain reaction (PCR) assay that simultaneously detects three types of flea-associated microorganisms. Targets for the assay were sequences encoding portions of the gltA, a 17-kDa antigen, and pla genes of Bartonella spp. Strong et al., Rickettsia spp. da Rocha-Lima, and Yersinia pestis Yersin, respectively. A total of 260 flea samples containing bloodmeal remnants were analyzed from fleas collected from abandoned prairie dog (Cynomys ludovicianus) burrows at the site of an active plague epizootic in Jefferson County, CO. Results indicated that 34 (13.1%) fleas were positive for Bartonella spp., 0 (0%) were positive for Rickettsia spp., and 120 (46.2%) were positive for Y. pestis. Twenty-three (8.8%) of these fleas were coinfected with Bartonella spp. and Y. pestis. A second group of 295 bloodmeal-containing fleas was collected and analyzed from abandoned burrows in Logan County, CO, where a prairie dog die-off had occurred 2–4 mo before the time of sampling. Of these 295 fleas, 7 (2.4%) were positive for Bartonella spp., 0 (0%) were positive for Rickettsia spp., and 46 (15.6%) were positive for Y. pestis. Coinfections were not observed in fleas from the Logan County epizootic site. The multiplex PCR also was used to identify Y. pestis and Bartonella in prairie dog blood and tissues. This report represents the first identification of Bartonella from prairie dogs and their fleas. Prairie dog fleas were tested with PCR, and the Bartonella PCR amplicons produced were sequenced and found to be closely related to similar sequences amplified from Bartonella that had been isolated from prairie dog blood samples. Phylogenetic analyses indicate that the sequences of bartonellae from prairie dogs and prairie dog fleas cluster tightly within a clade that is distinct from those containing other known Bartonella genotypes.


Journal of Medical Entomology | 2007

Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas.

Rebecca J. Eisen; Aryn P. Wilder; Scott W. Bearden; John A. Montenieri; Kenneth L. Gage

Abstract For almost a century, the oriental rat flea, Xenopsylla cheopis (Rothschild) (Siphonaptera: Pulicidae), was thought to be the most efficient vector of the plague bacterium Yersinia pestis (Yersin). Approximately 2 wk after consuming an infectious bloodmeal, a blockage often forms in the flea’s proventriculus, which forces the flea to increase its biting frequency and consequently increases the likelihood of transmission. However, if fleas remain blocked and continue to feed, they usually die within 5 d of blocking, resulting in a short infectious window. Despite observations of X. cheopis transmitting Y. pestis shortly after pathogen acquisition, early-phase transmission (e.g., transmission 1–4 d postinfection [p.i.]) by unblocked fleas was viewed as anomalous and thought to occur only by mass action. We used an artificial feeding system to infect colony-reared X. cheopis with a fully virulent strain of Y. pestis, and we evaluated transmission efficiency 1–4 d p.i. We demonstrate 1) that a single infected and unblocked X. cheopis can infect a susceptible host as early as 1 d p.i., 2) the number of fleas per host required for unblocked fleas to drive a plague epizootic by early-phase transmission is within the flea infestation range observed in nature, and 3) early-phase transmission by unblocked fleas in the current study was at least as efficient as transmission by blocked fleas in a previously published study using the same colony of fleas and same bacterial strain. Furthermore, transmission efficiency seemed to remain constant until block formation, resulting in an infectious period considerably longer than previously thought.


Vector-borne and Zoonotic Diseases | 2010

Vector Control Improves Survival of Three Species of Prairie Dogs (Cynomys) in Areas Considered Enzootic for Plague

Dean E. Biggins; Jerry L. Godbey; Kenneth L. Gage; Leon G. Carter; John A. Montenieri

Plague causes periodic epizootics that decimate populations of prairie dogs (PDs) (Cynomys), but the means by which the causative bacterium (Yersinia pestis) persists between epizootics are poorly understood. Plague epizootics in PDs might arise as the result of introductions of Y. pestis from sources outside PD colonies. However, it remains possible that plague persists in PDs during interepizootic periods and is transmitted at low rates among highly susceptible individuals within and between their colonies. If this is true, application of vector control to reduce flea numbers might reduce mortality among PDs. To test whether vector control enhances PD survival in the absence of obvious plague epizootics, we reduced the numbers of fleas (vectors for Y. pestis) 96-98% (1 month posttreatment) on 15 areas involving three species of PDs (Cynomys leucurus, Cynomys parvidens in Utah, and Cynomys ludovicianus in Montana) during 2000-2004 using deltamethrin dust delivered into burrows as a pulicide. Even during years without epizootic plague, PD survival rates at dusted sites were 31-45% higher for adults and 2-34% higher for juveniles compared to survival rates at nondusted sites. Y. pestis was cultured from 49 of the 851 flea pools tested (6882 total fleas) and antibodies against Y. pestis were identified in serum samples from 40 of 2631 PDs. Although other explanations are possible, including transmission of other potentially fatal pathogens by fleas, ticks, or other ectoparasites, our results suggest that plague might be maintained indefinitely in PD populations in the absence of free epizootics and widespread mortality among these animals. If PDs and their fleas support enzootic cycles of plague transmission, there would be important implications for the conservation of these animals and other species.


Journal of Medical Entomology | 2003

Treatment of black-tailed prairie dog burrows with deltamethrin to control fleas (Insecta: Siphonaptera) and plague

D.B. Seery; Dean E. Biggins; John A. Montenieri; Russell E. Enscore; Dale Tanda; Kenneth L. Gage

Abstract Burrows within black-tailed prairie dog (Cynomys ludovicianus) colonies on the Rocky Mountain Arsenal National Wildlife Refuge, Colorado, were dusted with deltamethrin insecticide to reduce flea (Insecta: Siphonaptera) abundance. Flea populations were monitored pre- and posttreatment by combing prairie dogs and collecting fleas from burrows. A single application of deltamethrin significantly reduced populations of the plague vector Oropsylla hirsuta, and other flea species on prairie dogs and in prairie dog burrows for at least 84 d. A plague epizootic on the Rocky Mountain Arsenal National Wildlife Refuge caused high mortality of prairie dogs on some untreated colonies, but did not appear to affect nearby colonies dusted with deltamethrin.


Journal of Medical Entomology | 2007

Human Plague in the Southwestern United States, 1957–2004: Spatial Models of Elevated Risk of Human Exposure to Yersinia pestis

Rebecca J. Eisen; Russell E. Enscore; Brad J. Biggerstaff; Pamela J. Reynolds; Paul Ettestad; Ted Brown; John Pape; Dale Tanda; Craig Levy; David M. Engelthaler; James E. Cheek; Rudy Bueno; Joseph Targhetta; John A. Montenieri; Kenneth L. Gage

Abstract Plague is a rare but highly virulent flea-borne zoonotic disease caused by the Gram-negative bacterium Yersinia pestis Yersin. Identifying areas at high risk of human exposure to the etiological agent of plague could provide a useful tool for targeting limited public health resources and reduce the likelihood of misdiagnosis by raising awareness of the disease. We created logistic regression models to identify landscape features associated with areas where humans have acquired plague from 1957 to 2004 in the four-corners region of the United States (Arizona, Colorado, New Mexico, and Utah), and we extrapolated those models within a geographical information system to predict where plague cases are likely to occur within the southwestern United States disease focus. The probability of an area being classified as high-risk plague habitat increased with elevation up to ≈2,300 m and declined as elevation increased thereafter, and declined with distance from key habitat types (e.g., southern Rocky Mountain piñon—juniper [Pinus edulis Engelm. and Juniperus spp.], Colorado plateau piñon-juniper woodland, Rocky Mountain ponderosa pine (Pinus ponderosa P.& C. Lawson var. scopulorum), and southern Rocky Mountain juniper woodland and savanna). The overall accuracy of the model was >82%. Our most conservative model predicted that 14.4% of the four-corners region represented a high risk of peridomestic exposure to Y. pestis.


Vector-borne and Zoonotic Diseases | 2009

Flea Abundance on Black-Tailed Prairie Dogs (Cynomys ludovicianus) Increases During Plague Epizootics

Daniel W. Tripp; Kenneth L. Gage; John A. Montenieri; Michael F. Antolin

Black-tailed prairie dogs (Cynomys ludovicianus) on the Great Plains of the United States are highly susceptible to plague, caused by the bacterium Yersinia pestis, with mortality on towns during plague epizootics often approaching 100%. The ability of flea-borne transmission to sustain disease spread has been questioned because of inefficiency of flea vectors. However, even with low individual efficiency, overall transmission can be increased if flea abundance (the number of fleas on hosts) increases. Changes in flea abundance on hosts during plague outbreaks were recorded during a large-scale study of plague outbreaks in prairie dogs in north central Colorado during 3 years (2004-2007). Fleas were collected from live-trapped black-tailed prairie dogs before and during plague epizootics and tested by PCR for the presence of Y. pestis. The predominant fleas were two prairie dog specialists (Oropsylla hirsuta and Oropsylla tuberculata cynomuris), and a generalist flea species (Pulex simulans) was also recorded from numerous mammals in the area. The three species differ in seasonal abundance, with greatest abundance in spring (February and March) and fall (September and October). Flea abundance and infestation intensity increased during epizootics and were highest on prairie dogs with Y. pestis-infected fleas. Seasonal occurrence of epizootics among black-tailed prairie dogs was found to coincide with seasonal peaks in flea abundance. Concentration of infected fleas on surviving animals may account for rapid spread of plague during epizootics. In particular, the role of the generalist flea P. simulans was previously underappreciated.


Applied and Environmental Microbiology | 2004

Methods for Enhanced Culture Recovery of Francisella tularensis

Jeannine M. Petersen; Martin E. Schriefer; Kenneth L. Gage; John A. Montenieri; Leon G. Carter; Miles Stanley; May C. Chu

ABSTRACT Francisella tularensis is found in a wide variety of hosts and extrahost environments, making culture recovery a diagnostic challenge. Here we demonstrate improved recovery times and good sensitivity (90%) when cultures were inoculated on the site of an investigation using fresh tissues. For contaminated specimens, antibiotic supplementation of enriched cysteine heart agar blood culture medium improved recovery of F. tularensis by 81.1%. For transport of tissues, immediate freezing yielded culture recovery rates as high as 94%.


Vector-borne and Zoonotic Diseases | 2008

Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis.

Aryn P. Wilder; Rebecca J. Eisen; Scott W. Bearden; John A. Montenieri; Kenneth L. Gage; Michael F. Antolin

Plague, caused by the bacterium Yersinia pestis, often leads to rapid decimation of black-tailed prairie dog colonies. Flea-borne transmission of Y. pestis has been thought to occur primarily via blocked fleas, and therefore studies of vector efficiency have focused on the period when blockage is expected to occur (> or =5 days post-infection [p.i.]). Oropsylla hirsuta, a prairie dog flea, rarely blocks and transmission is inefficient > or =5 days p.i.; thus, this flea has been considered incapable of explaining rapid dissemination of Y. pestis among prairie dogs. By infecting wild-caught fleas with Y. pestis and exposing naïve mice to groups of fleas at 24, 48, 72, and 96 h p.i., we examined the early-phase (1-4 days p.i.) efficiency of O. hirsuta to transmit Y. pestis to hosts and showed that O. hirsuta is a considerably more efficient vector at this largely overlooked stage (5.19% of fleas transmit Y. pestis at 24 h p.i.) than at later stages. Using a model of vectorial capacity, we suggest that this level of transmission can support plague at an enzootic level in a population when flea loads are within the average observed for black-tailed prairie dogs in nature. Shared burrows and sociality of prairie dogs could lead to accumulation of fleas when host population is reduced as a result of the disease, enabling epizootic spread of plague among prairie dogs.


Emerging Infectious Diseases | 2004

First Reported Prairie Dog–to-Human Tularemia Transmission, Texas, 2002

Swati B. Avashia; Jeannine M. Petersen; Connie Lindley; Martin E. Schriefer; Kenneth L. Gage; Marty Cetron; Thomas A. DeMarcus; David K. Kim; Jan Buck; John A. Montenieri; Jennifer L. Lowell; Michael F. Antolin; Michael Y. Kosoy; Leon G. Carter; May C. Chu; Katherine A. Hendricks; David T. Dennis; Jacob L. Kool

A tularemia outbreak, caused by Francisella tularensis type B, occurred among wild-caught, commercially traded prairie dogs. F. tularensis microagglutination titers in one exposed person indicated recent infection. These findings represent the first evidence for prairie-dog-to-human tularemia transmission and demonstrate potential human health risks of the exotic pet trade.

Collaboration


Dive into the John A. Montenieri's collaboration.

Top Co-Authors

Avatar

Kenneth L. Gage

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Eisen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Scott W. Bearden

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Holmes

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Russell E. Enscore

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Christine B. Graham

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Sara M. Vetter

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna M. Schotthoefer

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar

Aryn P. Wilder

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge