Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Ogren is active.

Publication


Featured researches published by John A. Ogren.


Journal of Geophysical Research | 2001

Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze

V. Ramanathan; Paul J. Crutzen; J. Lelieveld; A. P. Mitra; Dietrich Althausen; James R. Anderson; Meinrat O. Andreae; Will Cantrell; Glen R. Cass; Chul Eddy Chung; Antony D. Clarke; James A. Coakley; W. D. Collins; William C. Conant; F. Dulac; Jost Heintzenberg; Andrew J. Heymsfield; Brent N. Holben; S. Howell; James G. Hudson; A. Jayaraman; Jeffrey T. Kiehl; T. N. Krishnamurti; Dan Lubin; Greg M. McFarquhar; T. Novakov; John A. Ogren; I. A. Podgorny; Kimberly A. Prather; Kory J. Priestley

Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (-20±4 W m^(−2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.


Aerosol Science and Technology | 1998

Determining Aerosol Radiative Properties Using the TSI 3563 Integrating Nephelometer

Theodore L. Anderson; John A. Ogren

ABSTRACT Methods for reducing and quantifying the uncertainties in aerosol optical properties measured with the TSI 3563 integrating nephelometer are presented. For nearly all applications, the recommended calibration gases are air and CO2. By routinely characterizing the instrumental response to these gases, a diagnostic record of instrument performance can be created. This record can be used to improve measurement accuracy and quantify uncertainties due to instrumental noise and calibration drift. When measuring scattering by particles, size segregation upstream of the nephelometer at about 1 μm aerodynamic diameter greatly increases the information content of the data for two reasons: one stemming from the independence of coarse and fine particles in the atmosphere, and the second stemming from the size dependence of the nephelometer response. For many applications (e.g., extinction budget studies) it is important to correct nephelometer data for the effects of angular nonidealities. Correction factors...


Aerosol Science and Technology | 2005

Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer

W. Patrick Arnott; Khadeejeh Hamasha; Hans Moosmüller; Patrick J. Sheridan; John A. Ogren

Two extreme cases of aerosol optics from the Reno Aerosol Optics Experiment are used to develop a model-based calibration scheme for the 7-wavelength aethalometer. The cases include those of very white and very dark aerosol samples. The former allows for an assessment of the scattering offset associated with this filter-based method, with the wavelength-dependent scattering measured from a 3-wavelength nephelometer, and interpolated and extrapolated to the 7 wavelengths of the aethalometer. A photoacoustic instrument operating at 532 nm is used to evaluate the filter loading effect caused by aerosol light absorption. Multiple scattering theory is used to analytically obtain a filter-loading correction function. This theory shows that the exponential behavior of light absorption in the strong multiple scattering limit scales as the square root of the total absorption optical depth rather than linearly with optical depth as is commonly assumed with Beers law. The multiple scattering model also provides a theoretical justification for subtracting a small fraction of aerosol light scattering away from measured apparent light absorption by the filter method. The model is tested against ambient measurements and is found to require coefficients that are situation specific. Several hypotheses are given for this specificity, and suggested methods for reducing it are discussed. Specific findings are as follows. Simultaneous aerosol light-scattering measurements are required for accurate interpretation of aethalometer data for high aerosol single-scattering albedo. Instantaneous errors of up to ±50% are possible for uncorrected data, depending on filter loading. The aethalometer overpredicts black carbon (BC) concentration on a fresh filter and underpredicts BC on a loaded filter. BC and photoacoustic light absorption can be tightly correlated if the data are averaged over the full range of filter loadings and the aerosol source is constant. Theory predicts that the Aethalometer response may be sensitive to filter face velocity, and hence flow rate, to the extent that particle penetration depth depends on face velocity.


Bulletin of the American Meteorological Society | 1994

Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols

Joyce E. Penner; Robert J. Charlson; J. M. Hales; N. S. Laulainen; R. Leifer; T. Novakov; John A. Ogren; L. F. Radke; Stephen E. Schwartz; Larry D. Travis

The clear-sky climate forcing by anthropogenic aerosols has been shown to be of sufficient magnitude to mask the effects of anthropogenic greenhouse gases over large regions. Anthropogenic aerosols are composed of a variety of aerosol types including water-soluble inorganic species (e.g., sulfate, nitrate, ammonium), organic condensed species, elemental or black carbon, and mineral dust. Estimates of the clear-sky forcing by anthropogenic sulfate aerosols and by organic biomass-burning aerosols have been published previously. Here we estimate the uncertainty in the forcing by these aerosol types. Estimates of the clear-sky forcing by other anthropogenic aerosol types do not even exist though the forcing by these aerosol types is thought to be smaller than that by sulfate and biomass burning aerosols.


Journal of the Atmospheric Sciences | 2003

Mesoscale Variations of Tropospheric Aerosols

Theodore L. Anderson; Robert J. Charlson; David M. Winker; John A. Ogren; Kim Holmén

Abstract Tropospheric aerosols are calculated to cause global-scale changes in the earths heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented synergy among satellite, airborne, and surface-based observations, as well as models. This study considers one aspect of achieving this synergy—the need to treat aerosol variability in a consistent and realistic way. This need creates a requirement to rationalize the differences in spatiotemporal resolution and coverage among the various observational and modeling approaches. It is shown, based on aerosol optical data from diverse regions, that mesoscale variability (specifically, for horizontal scales of 40–400 km and temporal scales of 2–48 h) is a common and perhaps universal feature of lower-tropospheric aerosol light extinction. Such variation is below the traditional synoptic or “airmass” scale (where the aerosol is often assumed to be essentially ho...


Journal of the Atmospheric Sciences | 2002

Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites

David J. Delene; John A. Ogren

Abstract Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (σap) is 10 times larger and the mean aerosol scattering coefficient (σsp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (ωo) and hemispheric backscatter fraction (b) have variability of approximately ± 3% and ± 8%, respectively, in mean values among the four stations. To assess the importance of the variability in ωo and b on top of the atmosphere a...


Aerosol Science and Technology | 2005

The Reno Aerosol Optics Study: An Evaluation of Aerosol Absorption Measurement Methods

Patrick J. Sheridan; W. Patrick Arnott; John A. Ogren; E. Andrews; Dean B. Atkinson; David S. Covert; Hans Moosmüller; Andreas Petzold; Beat Schmid; Anthony W. Strawa; Ravi Varma; Aki Virkkula

The Reno Aerosol Optics Study (RAOS) was designed and conducted to compare the performance of many existing and new instruments for the in situ measurement of aerosol optical properties with a focus on the determination of aerosol light absorption. For this study, simple test aerosols of black and white particles were generated and combined in external mixtures under low relative humidity conditions and delivered to each measurement system. The aerosol mixing and delivery system was constantly monitored using particle counters and nephelometers to ensure that the same aerosol number concentration and amount reached the different instruments. The aerosol light-scattering measurements of four different nephelometers were compared, while the measurements of seven light-absorption instruments (5 filter based, 2 photoacoustic) were evaluated. Four methods for determining the aerosol light-extinction coefficient (3 cavity ring-down instruments and 1 folded-path optical extinction cell) were also included in the comparisons. An emphasis was placed on determining the representativeness of the filter-based light absorption methods, since these are used widely and because major corrections to the raw attenuation measurements are known to be required. The extinction measurement from the optical extinction cell was compared with the scattering measurement from a high-sensitivity integrating nephelometer on fine, nonabsorbing ammonium sulfate aerosols, and the two were found to agree closely (within 1% for blue and green wavelengths and 2% for red). The wavelength dependence of light absorption for small kerosene and diesel soot particles was found to be very near λ− 1, the theoretical small-particle limit. Larger, irregularly shaped graphite particles showed widely variable wavelength dependencies over several graphite runs. The light-absorption efficiency at a wavelength of 530 nm for pure kerosene soot with a number size distribution peak near 0.3 μ m diameter was found to be 7.5 ± 1.2 m2 g− 1. The two most fundamental independent absorption methods used in this study were photoacoustic absorption and the difference between suspended-state light extinction and scattering, and these showed excellent agreement (typically within a few percent) on mixed black/white aerosols, with the photoacoustic measurement generally slightly lower. Excellent agreement was also observed between some filter-based light-absorption measurements and the RAOS reference absorption method. For atmospherically relevant levels of the aerosol light-absorption coefficient (< 25 Mm− 1), the particle soot absorption photometer (PSAP) absorption measurement at mid-visible wavelengths agreed with the reference absorption measurement to within ∼ 11% for experiment tests on externally mixed kerosene soot and ammonium sulfate. At higher absorption levels (characterized by lower single-scattering albedo aerosol tests), this agreement worsened considerably, most likely due to an inadequate filter loading correction used for the PSAP. The PSAP manufacturers filter loading correction appears to do an adequate job of correcting the PSAP absorption measurement at aerosol single-scattering albedos above 0.80–0.85, which represents most atmospheric aerosols, but it does a progressively worse job at lower single-scattering albedos. A new filter-based light-absorption photometer was also evaluated in RAOS, the multiangle absorption photometer (MAAP), which uses a two-stream radiative transfer model to determine the filter and aerosol scattering effects for a better calculation of the absorption coefficient. The MAAP absorption measurements agreed with the reference absorption measurements closely (linear regression slope of ∼ 0.99) for all experimental tests on externally mixed kerosene soot and ammonium sulfate.


Aerosol Science and Technology | 1988

Design and Calibration of a Counterflow Virtual Impactor for Sampling of Atmospheric Fog and Cloud Droplets

Kevin J. Noone; John A. Ogren; Jost Heintzenberg; Robert J. Charlson; David S. Covert

An instrument is described that samples cloud droplets by removing them from the surrounding air and small unactivated particles through inertial impaction. The sampled droplets are then evaporated, leaving behind the material dissolved or suspended in the droplets as residue particles or gases. The instrument is capable of sampling droplets as a function of their size; it has an adjustable cut size in the range between about 9 and 30 μm in diameter, rejects droplets and particles smaller than the cut size, and captures droplets larger than the cut size. Details of the instrumental design and construction are discussed, as well as a relative calibration of the collection efficiency. Results from the calibration experiments indicate that the counterflow virtual impactor probe behaves in accordance with theoretical predictions using Stokes number calculations. A complete description of the calibration methodology is presented.


Journal of Geophysical Research | 2001

Four years of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site

P. J. Sheridan; D. J. Delene; John A. Ogren

Continuous measurements of the optical and microphysical properties of aerosol particles have been made at the Department of Energys Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed (CART) site covering the 4-year period from July 1996 through June 2000. Hourly, daily, and monthly statistics have been calculated that illustrate aerosol variability over a range of timescales. A pronounced peak in total particle number, centered on the midafternoon hours (local time), is evident in the hourly statistics. A broad early morning peak in the concentration of particles >0.1-μm aerodynamic diameter corresponds with a similar peak in aerosol light-scattering coefficient, σsp. No strong cycles were observed in the daily statistics, suggesting that day of the week has only a minor influence on the observed aerosol variability. The σsp at a wavelength of 550 nm for the 4-year period showed a median value of 33 Mm−1 and was highest in February and August. The median fraction of aerosol light scattering at 550 nm due to particles <1-μm aerodynamic diameter was 0.85 over the entire record. The median aerosol light absorption coefficient, σap, for the 4-year period was ∼1.5 Mm−1 and was observed to be highest in late summer and autumn. The σap showed an increasing trend of nearly 0.5 Mm−1 yr, possibly due to increased agricultural field burning in the area. The occurrence of an autumn decrease in single-scattering albedo, ω0, was observed and may be caused by regional-scale agricultural or transportation activities or seasonal changes in atmospheric flow patterns. The median value for ω0 over the 4-year period was 0.95, but this value has decreased ∼1–2% yr−1 presumably due to increased agricultural burning. Numerous field fires during the second half of 1999 influenced the surface aerosol at the CART site causing substantial variability of aerosol optical properties. The aerosol hygroscopic growth factor (f(RH)), corresponding to a relative humidity increase of 40–85%, showed a median value of 1.83 for 1999, although much lower values were observed during periods that were probably influenced by locally generated smoke and dust aerosols (median f(RH) = 1.55 and 1.59, respectively).


Aerosol Science and Technology | 2005

Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption

Andreas Petzold; Herbert Schloesser; Patrick J. Sheridan; W. Patrick Arnott; John A. Ogren; Aki Virkkula

A new multiangle absorption photometer for the measurement of aerosol light absorption was recently introduced that builds on the simultaneous measurement of radiation transmitted through and scattered back from a particle-loaded fiber filter at multiple detection angles. The absorption coefficient of the filter-deposited aerosol is calculated from the optical properties of the entire filter system, which are determined by a two-stream-approximation radiative transfer scheme. In the course of the Reno Aerosol Optics Study (RAOS), the response characteristics of multiangle absorption photometry (MAAP) for white aerosol, pure black carbon aerosol from different sources, external mixtures of black and white aerosol, and ambient aerosol was investigated. The MAAP response characteristics were compared to basic filter transmittance and filter reflectance measurements. MAAP showed close agreement with a reference absorption measurement by extinction minus scattering. The slopes of regression lines vary between 0.99 ± 0.01 and 1.07 ± 0.02 for pure black carbon particles and external mixtures with ammonium sulphate to 1.03 ± 0.05 for ambient aerosol. No effect of the filter aerosol loading or the single-scattering albedo ω0 of the sampled aerosol on the MAAP response characteristics was observed. In contrast, transmittance and reflectance methods showed a clear impact of ω0 and the filter loading on the response characteristics, which requires the application of a correction function for the reliable determination of the aerosol absorption coefficient. In the case of nonabsorbing aerosol, the MAAP approach reduced the magnitude of the apparently measured absorption coefficient by one order of magnitude compared to a basic transmittance measurement.

Collaboration


Dive into the John A. Ogren's collaboration.

Top Co-Authors

Avatar

E. Andrews

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Anne Jefferson

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Patrick J. Sheridan

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin J. Noone

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen E. Schwartz

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge