Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John B. Hogenesch is active.

Publication


Featured researches published by John B. Hogenesch.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A circadian gene expression atlas in mammals: Implications for biology and medicine

Ray Zhang; Nicholas F. Lahens; Heather I. Ballance; Michael E. Hughes; John B. Hogenesch

Significance We generated high-resolution multiorgan expression data showing that nearly half of all genes in the mouse genome oscillate with circadian rhythm somewhere in the body. Such widespread transcriptional oscillations have not been previously reported in mammals. Applying pathway analysis, we observed new clock-mediated spatiotemporal relationships. Moreover, we found a majority of best-selling drugs in the United States target circadian gene products. Many of these drugs have relatively short half-lives, and our data predict which may benefit from timed dosing. To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional “rush hours” preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.


PLOS Genetics | 2009

Harmonics of Circadian Gene Transcription in Mammals

Michael E. Hughes; Luciano DiTacchio; Kevin R. Hayes; Christopher Vollmers; S. Pulivarthy; Julie E. Baggs; Satchidananda Panda; John B. Hogenesch

The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.


Molecular Cell | 2009

ESRP1 and ESRP2 Are Epithelial Cell-Type-Specific Regulators of FGFR2 Splicing

Claude C. Warzecha; Trey K. Sato; Behnam Nabet; John B. Hogenesch; Russ P. Carstens

Cell-type-specific expression of epithelial and mesenchymal isoforms of Fibroblast Growth Factor Receptor 2 (FGFR2) is achieved through tight regulation of mutually exclusive exons IIIb and IIIc, respectively. Using an application of cell-based cDNA expression screening, we identified two paralogous epithelial cell-type-specific RNA-binding proteins that are essential regulators of FGFR2 splicing. Ectopic expression of either protein in cells that express FGFR2-IIIc caused a switch in endogenous FGFR2 splicing to the epithelial isoform. Conversely, knockdown of both factors in cells that express FGFR2-IIIb by RNA interference caused a switch from the epithelial to mesenchymal isoform. These factors also regulate splicing of CD44, p120-Catenin (CTNND1), and hMena (ENAH), three transcripts that undergo changes in splicing during the epithelial-to-mesenchymal transition (EMT). These studies suggest that Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are coordinators of an epithelial cell-type-specific splicing program.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation

Brooke H. Miller; Erin L. McDearmon; Satchidananda Panda; Kevin R. Hayes; Jie Zhang; Jessica L. Andrews; Marina P. Antoch; John R. Walker; Karyn A. Esser; John B. Hogenesch; Joseph S. Takahashi

Circadian rhythms of cell and organismal physiology are controlled by an autoregulatory transcription-translation feedback loop that regulates the expression of rhythmic genes in a tissue-specific manner. Recent studies have suggested that components of the circadian pacemaker, such as the Clock and Per2 gene products, regulate a wide variety of processes, including obesity, sensitization to cocaine, cancer susceptibility, and morbidity to chemotherapeutic agents. To identify a more complete cohort of genes that are transcriptionally regulated by CLOCK and/or circadian rhythms, we used a DNA array interrogating the mouse protein-encoding transcriptome to measure gene expression in liver and skeletal muscle from WT and Clock mutant mice. In WT tissue, we found that a large percentage of expressed genes were transcription factors that were rhythmic in either muscle or liver, but not in both, suggesting that tissue-specific output of the pacemaker is regulated in part by a transcriptional cascade. In comparing tissues from WT and Clock mutant mice, we found that the Clock mutation affects the expression of many genes that are rhythmic in WT tissue, but also profoundly affects many nonrhythmic genes. In both liver and skeletal muscle, a significant number of CLOCK-regulated genes were associated with the cell cycle and cell proliferation. To determine whether the observed patterns in cell-cycle gene expression in Clock mutants resulted in functional dysregulation, we compared proliferation rates of fibroblasts derived from WT or Clock mutant embryos and found that the Clock mutation significantly inhibits cell growth and proliferation.


Journal of Biological Rhythms | 2010

JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets

Michael E. Hughes; John B. Hogenesch; Karl Kornacker

Circadian rhythms are oscillations of physiology, behavior, and metabolism that have period lengths near 24 hours. In several model organisms and humans, circadian clock genes have been characterized and found to be transcription factors. Because of this, researchers have used microarrays to characterize global regulation of gene expression and algorithmic approaches to detect cycling. This article presents a new algorithm, JTK_CYCLE, designed to efficiently identify and characterize cycling variables in large data sets. Compared with COSOPT and the Fisher’s G test, two commonly used methods for detecting cycling transcripts, JTK_CYCLE distinguishes between rhythmic and nonrhythmic transcripts more reliably and efficiently. JTK_CYCLE’s increased resistance to outliers results in considerably greater sensitivity and specificity. Moreover, JTK_CYCLE accurately measures the period, phase, and amplitude of cycling transcripts, facilitating downstream analyses. Finally, JTK_CYCLE is several orders of magnitude faster than COSOPT, making it ideal for large-scale data sets. JTK_CYCLE was used to analyze legacy data sets including NIH3T3 cells, which have comparatively low amplitude oscillations. JTK_CYCLE’s improved power led to the identification of a novel cluster of RNA-interacting genes whose abundance is under clear circadian regulation. These data suggest that JTK_CYCLE is an ideal tool for identifying and characterizing oscillations in genome-scale data sets.


Angewandte Chemie | 2008

Small Molecule Inhibitors of MicroRNA miR-21 Function

Kiranmai Gumireddy; Douglas D. Young; Xin Xiong; John B. Hogenesch; Qihong Huang; Alexander Deiters

MicroRNAs (miRNAs) have recently emerged as an important class of gene regulators, and their misregulation has been linked to a variety of cancers. Small molecule inhibitors of miRNAs would be important tools to elucidate the detailed mechanisms of miRNA function and provide lead structures for the development of new therapeutics. We are reporting a cellular screen for miRNA pathway inhibitors and the first small molecule modifiers of miRNA function.


Cell | 2009

A Genome-wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells

Eric E. Zhang; Andrew C. Liu; Tsuyoshi Hirota; Loren Miraglia; Genevieve Welch; Pagkapol Y. Pongsawakul; Xianzhong Liu; Ann Atwood; Jon W. Huss; Jeff Janes; Andrew I. Su; John B. Hogenesch; Steve A. Kay

Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide small interfering RNA screen in a human cellular clock model. Knockdown of nearly 1000 genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock regulated, we conclude the clock is interconnected with many aspects of cellular function.


Bioinformatics | 2011

Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM)

Gregory R. Grant; Michael H. Farkas; Angel Pizarro; Nicholas F. Lahens; Jonathan Schug; Brian P. Brunk; Christian J. Stoeckert; John B. Hogenesch; Eric A. Pierce

MOTIVATION A critical task in high-throughput sequencing is aligning millions of short reads to a reference genome. Alignment is especially complicated for RNA sequencing (RNA-Seq) because of RNA splicing. A number of RNA-Seq algorithms are available, and claim to align reads with high accuracy and efficiency while detecting splice junctions. RNA-Seq data are discrete in nature; therefore, with reasonable gene models and comparative metrics RNA-Seq data can be simulated to sufficient accuracy to enable meaningful benchmarking of alignment algorithms. The exercise to rigorously compare all viable published RNA-Seq algorithms has not been performed previously. RESULTS We developed an RNA-Seq simulator that models the main impediments to RNA alignment, including alternative splicing, insertions, deletions, substitutions, sequencing errors and intron signal. We used this simulator to measure the accuracy and robustness of available algorithms at the base and junction levels. Additionally, we used reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing to validate the ability of the algorithms to detect novel transcript features such as novel exons and alternative splicing in RNA-Seq data from mouse retina. A pipeline based on BLAT was developed to explore the performance of established tools for this problem, and to compare it to the recently developed methods. This pipeline, the RNA-Seq Unified Mapper (RUM), performs comparably to the best current aligners and provides an advantageous combination of accuracy, speed and usability. AVAILABILITY The RUM pipeline is distributed via the Amazon Cloud and for computing clusters using the Sun Grid Engine (http://cbil.upenn.edu/RUM). CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION The RNA-Seq sequence reads described in the article are deposited at GEO, accession GSE26248.


Science | 2013

Extensive variation in chromatin states across humans.

Maya Kasowski; Sofia Kyriazopoulou-Panagiotopoulou; Fabian Grubert; Judith B. Zaugg; Anshul Kundaje; Yuling Liu; Alan P. Boyle; Qiangfeng Cliff Zhang; Fouad Zakharia; Damek V. Spacek; Jingjing Li; Dan Xie; Anthony O. Olarerin-George; Lars M. Steinmetz; John B. Hogenesch; Manolis Kellis; Serafim Batzoglou; Michael Snyder

DNA Differences The extent to which genetic variation affects an individuals phenotype has been difficult to predict because the majority of variation lies outside the coding regions of genes. Now, three studies examine the extent to which genetic variation affects the chromatin of individuals with diverse ancestry and genetic variation (see the Perspective by Furey and Sethupathy). Kasowski et al. (p. 750, published online 17 October) examined how genetic variation affects differences in chromatin states and their correlation to histone modifications, as well as more general DNA binding factors. Kilpinen et al. (p. 744, published online 17 October) document how genetic variation is linked to allelic specificity in transcription factor binding, histone modifications, and transcription. McVicker et al. (p. 747, published online 17 October) identified how quantitative trait loci affect histone modifications in Yoruban individuals and established which specific transcription factors affect such modifications. Variability among humans with different ancestry affects chromatin states and gene expression. [Also see Perspective by Furey and Sethupathy] The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.


PLOS Biology | 2009

Network Features of the Mammalian Circadian Clock

Julie E. Baggs; Thomas S. Price; Luciano DiTacchio; Satchidananda Panda; Garret A. FitzGerald; John B. Hogenesch

The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA) in which small interfering RNA (siRNA)-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation.

Collaboration


Dive into the John B. Hogenesch's collaboration.

Top Co-Authors

Avatar

Julie E. Baggs

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Michael E. Hughes

University of Missouri–St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ron C. Anafi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lauren J. Francey

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Wu

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian J. Altman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Gregory R. Grant

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge