Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John B. Pritchard is active.

Publication


Featured researches published by John B. Pritchard.


Journal of Biological Chemistry | 1997

Expression Cloning and Characterization of ROAT1 THE BASOLATERAL ORGANIC ANION TRANSPORTER IN RAT KIDNEY

Douglas H. Sweet; Natascha A. Wolff; John B. Pritchard

Expression cloning in Xenopus laevisoocytes was used to isolate an organic anion transport protein from rat kidney. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for probenecid-sensitive transport of p-aminohippurate (PAH). A 2,227-base pair cDNA clone containing a 1,656-base pair open reading frame coding for a peptide 551 amino acids long was isolated and named ROAT1. ROAT1-mediated transport of 50 μm [3H]PAH was independent of imposed changes in membrane potential. Transport was significantly inhibited at 4 °C, or upon incubation with other organic anions, but not by the organic cation tetraethylammonium, by the multidrug resistance ATPase inhibitor cyclosporin A, or by urate. External glutarate and α-ketoglutarate (1 mm), both counterions for basolateral PAH exchange, also inhibited transport, suggesting that ROAT1 is functionally similar to the basolateral PAH carrier. Consistent with this conclusion, PAH uptake was trans-stimulated in oocytes preloaded with glutarate, whereas the dicarboxylate methylsuccinate, which is not accepted by the basolateral exchanger, did nottrans-stimulate. Finally, ROAT1-mediated PAH transport was saturable, with an estimated K m of 70 μm. Each of these properties is identical to those previously described for the basolateral α-ketoglutarate/PAH exchanger in isolated membrane vesicles or intact renal tubules.


Journal of Biological Chemistry | 1999

Mechanism of Organic Anion Transport across the Apical Membrane of Choroid Plexus

John B. Pritchard; Douglas H. Sweet; David S. Miller; Ramsey Walden

The mechanism and membrane localization of choroid plexus (CP) organic anion transport were determined in apical (or brush border) membrane vesicles isolated from bovine choroid plexus and in intact CP tissue from cow and rat. Brush border membrane vesicles were enriched in Na+,K+-ATPase (20-fold; an apical marker in CP) and demonstrated specific, sodium-coupled transport of proline, glucose, and glutarate. Vesicular uptake of the anionic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was markedly stimulated by an inward sodium gradient but only in the presence of glutarate, indicating the presence of apical dicarboxylate/organic anion exchange. Consistent with this interpretation, an imposed outward glutarate gradient stimulated 2,4-D uptake in the absence of sodium. Under both conditions, uptake was dramatically slowed and overshoot was abolished by probenecid. Likewise, apical accumulation of 2,4-D by intact bovine choroid plexus tissue in vitro was stimulated by external glutarate in the presence of sodium. Glutarate stimulation was abolished by 5 mm LiCl. Identical findings were obtained using rat CP tissue, which showed both sodium/glutarate-stimulated 2,4-D (tissue/medium (T/M) ∼ 8) andp-aminohippurate (T/M = 2) transport. Finally, since the renal exchanger (rROAT1) has been cloned in rat kidney, a rROAT1-green fluorescent protein construct was used to analyze exchanger distribution directly in transiently transfected rat CP. As predicted by the functional studies, the fluorescently tagged transporter was seen in apical but not basolateral membranes of the CP.


Drug Metabolism and Disposition | 2007

Localization of P-gp (Abcb1) and Mrp2 (Abcc2) in Freshly Isolated Rat Hepatocytes

Daniel A.J. Bow; Jennifer L. Perry; David S. Miller; John B. Pritchard; Kim L. R. Brouwer

Freshly isolated hepatocytes are widely accepted as the “gold standard” for providing reliable data on drug uptake across the sinusoidal (basolateral) membrane. However, the suitability of freshly isolated hepatocytes in suspension to assess efflux by canalicular (apical) proteins or predict biliary excretion in the intact organ is unclear. After collagenase digestion, hepatocytes rapidly lose polarity, but localization of canalicular transport proteins in the first few hours after isolation has not been well characterized. In this study, immunostaining and confocal microscopy have provided, for the first time, a detailed examination of canalicular transport protein localization in freshly isolated rat hepatocytes fixed within 1 h of isolation and in cells cultured for 1 h. Organic anion transporting polypeptide 1a1 (Oatp1a1) was expressed in all hepatocytes and distributed evenly across the basolateral membrane; there was no evidence for colocalization of Oatp1a1 with P-glycoprotein (P-gp) or multidrug resistance-associated protein 2 (Mrp2). In contrast, P-gp and Mrp2 expression was lower than Oatp1a1 and confined to junctions between adjacent cells, intracellular compartments, and “legacy” network structures at or near the cell surface. P-gp and Mrp2 staining was more predominant in regions adjacent to former canalicular spaces, identified by zonula occludens-1 staining. Functional analysis of rat hepatocytes cultured for 1 h demonstrated that the fluorescent anion and Mrp2 substrate, 5-(and-6)-carboxy-2′,7′-dichlorofluorescein (CDF), accumulated in cellular compartments; compartmental accumulation of CDF was sensitive to (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571, Mrp inhibitor) and was not observed in hepatocytes isolated from Mrp2-deficient rats. Drug efflux from freshly isolated hepatocytes as an estimate of apical efflux/biliary excretion would give an inaccurate assessment of true apical elimination and, as such, should not be used to make in vivo extrapolations.


Journal of Biological Chemistry | 2006

A three-dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport.

Jennifer L. Perry; Neetu Dembla-Rajpal; Laura A. Hall; John B. Pritchard

Organic anion transporters (OATs) play a critical role in the handling of endogenous and exogenous organic anions by excretory and barrier tissues. Little is known about the OAT three-dimensional structure or substrate/protein interactions involved in transport. In this investigation, a theoretical three-dimensional model was generated for human OAT1 (hOAT1) based on fold recognition to the crystal structure of the glycerol 3-phosphate transporter (GlpT) from Escherichia coli. GlpT and hOAT1 share several sequence motifs as major facilitator superfamily members. The structural hOAT1 model shows that helices 5, 7, 8, 10, and 11 surround an electronegative putative active site (∼830Å3). The site opens to the cytoplasm and is surrounded by three residues not previously examined for function (Tyr230 (domain 5) and Lys431 and Phe438 (domain 10)). Effects of these residues on p-aminohippurate (PAH) and cidofovir transport were assessed by point mutations in a Xenopus oocyte expression system. Membrane protein expression was severely limited for the Y230A mutant. For the K431A and F438A mutants, [3H]PAH uptake was less than 30% of wild-type hOAT1 uptake after protein expression correction. Reduced Vmax values for the F438A mutant confirmed lower protein expression. In addition, the F438A mutant exhibited an increased affinity for cidofovir but was not significantly different for PAH. Differences in handling of PAH and cidofovir were also observed for the Y230F mutant. Little uptake was determined for cidofovir, whereas PAH uptake was similar to wild-type hOAT1. Therefore, the hOAT1 structural model has identified two new residues, Tyr230 and Phe438, which are important for substrate/protein interactions.


Journal of Biological Chemistry | 2009

Activation of Protein Kinase Cζ Increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated Transport

Scott Barros; Chutima Srimaroeng; Jennifer L. Perry; Neetu Dembla-Rajpal; Douglas H. Sweet; John B. Pritchard

Organic anion transporters (OATs) play a pivotal role in the clearance of small organic anions by the kidney, yet little is known about how their activity is regulated. A yeast two-hybrid assay was used to identify putative OAT3-associated proteins in the kidney. Atypical protein kinase Cζ (PKCζ) was shown to bind to OAT3. Binding was confirmed in immunoprecipitation assays. The OAT3/PKCζ interaction was investigated in rodent renal cortical slices from fasted animals. Insulin, an upstream activator of PKCζ, increased both OAT3-mediated uptake of estrone sulfate (ES) and PKCζ activity. Both effects were abolished by a PKCζ-specific pseudosubstrate inhibitor. Increased ES transport was not observed in renal slices from OAT3-null mice. Transport of the shared OAT1/OAT3 substrate, ρ-aminohippurate, behaved similarly, except that stimulation was reduced, not abolished, in the OAT3-null mice. This suggested that OAT1 activity was also modified by PKCζ, subsequently confirmed using an OAT1-specific substrate, adefovir. Inhibition of PKCζ also blocked the increase in ES uptake seen in response to epidermal growth factor and to activation of protein kinase A. Thus, PKCζ acted downstream of the epidermal growth factor to protein kinase A signaling pathway. Activation of transport was accompanied by an increase in Vmax and was blocked by microtubule disruption, indicating that activation may result from trafficking of OAT3 into the plasma membrane. These data demonstrate that PKCζ activation up-regulates OAT1 and OAT3 function, and that protein-protein interactions play a central role controlling these two important renal drug transporters.


Cellular Physiology and Biochemistry | 2013

Regulation of Renal Organic Anion Transporter 3 (SLC22A8) Expression and Function by the Integrity of Lipid Raft Domains and their Associated Cytoskeleton

Chutima Srimaroeng; Jennifer Perry Cecile; John B. Pritchard

Background/Aims: In humans and rodents, organic anion transporter 3 (Oat3) is highly expressed on the basolateral membrane of renal proximal tubules and mediates the secretion of exogenous and endogenous anions. Regulation of Oat3 expression and function has been observed in both expression system and intact renal epithelia. However, information on the local membrane environment of Oat3 and its role is limited. Lipid raft domains (LRD; cholesterol-rich domains of the plasma membrane) play important roles in membrane protein expression, function and targeting. In the present study, we have examined the role of LRD-rich membranes and their associated cytoskeletal proteins on Oat3 expression and function. Methods: LRD-rich membranes were isolated from rat renal cortical tissues and from HEK-293 cells stably expressing human OAT3 (hOAT3) by differential centrifugation with triton X-100 extraction. Western blots were subsequently analyzed to determine protein expression. In addition, the effect of disruption of LRD-rich membranes was examined on functional Oat3 mediated estrone sulfate (ES) transport in rat renal cortical slices. Cytoskeleton disruptors were investigated in both hOAT3 expressing HEK-293 cells and rat renal cortical slices. Results: Lipid-enriched membranes from rat renal cortical tissues and hOAT3-expressing HEK-293 cells showed co-expression of rOat3/hOAT3 and several lipid raft-associated proteins, specifically caveolin 1 (Cav1), β-actin and myosin. Moreover, immunohistochemistry in hOAT3-expressing HEK-293 cells demonstrated that these LRD-rich proteins co-localized with hOAT3. Potassium iodide (KI), an inhibitor of protein-cytoskeletal interaction, effectively detached cytoskeleton proteins and hOAT3 from plasma membrane, leading to redistribution of hOAT3 into non-LRD-rich compartments. In addition, inhibition of cytoskeleton integrity and membrane trafficking processes significantly reduced ES uptake mediated by both human and rat Oat3. Cholesterol depletion by methyl-β-cyclodextrin (MβCD) also led to a dose dependent reduction Oat3 expression and ES transport by rat renal cortical slices. Moreover, the up-regulation of rOat3-mediated transport seen following insulin stimulation was completely prevented by MβCD. Conclusion: We have demonstrated that renal Oat3 resides in LRD-rich membranes in proximity to cytoskeletal and signaling proteins. Disruption of LRD-rich membranes by cholesterol-binding agents or protein trafficking inhibitors altered Oat3 expression and regulation. These findings indicate that the integrity of LRD-rich membranes and their associated proteins are essential for Oat3 expression and function.


Molecular Pharmacology | 1999

The Antiviral Nucleotide Analogs Cidofovir and Adefovir Are Novel Substrates for Human and Rat Renal Organic Anion Transporter 1

Tomas Cihlar; Deborah C. Lin; John B. Pritchard; Michael D. Fuller; Dirk B. Mendel; Douglas H. Sweet


Journal of Biological Chemistry | 2002

Impaired Organic Anion Transport in Kidney and Choroid Plexus of Organic Anion Transporter 3 (Oat3 (Slc22a8)) Knockout Mice

Douglas H. Sweet; David S. Miller; John B. Pritchard; Yuko Fujiwara; David R. Beier; Sanjay K. Nigam


Journal of Biological Chemistry | 2001

Ventricular Choline Transport A ROLE FOR ORGANIC CATION TRANSPORTER 2 EXPRESSED IN CHOROID PLEXUS

Douglas H. Sweet; David S. Miller; John B. Pritchard


Environmental Health Perspectives | 2002

The role of transgenic mouse models in carcinogen identification.

John B. Pritchard; John E. French; Barbara J. Davis; Joseph K. Haseman

Collaboration


Dive into the John B. Pritchard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Miller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amy G. Aslamkhan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Destiny B. Sykes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara J. Davis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Deborah M. Thompson

North Carolina Biotechnology Center

View shared research outputs
Top Co-Authors

Avatar

John E. French

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge