Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John B. Trudeau is active.

Publication


Featured researches published by John B. Trudeau.


American Journal of Pathology | 2004

Transforming Growth Factor-β2 Induces Bronchial Epithelial Mucin Expression in Asthma

Hong Wei Chu; Silvana Balzar; Gregory J. Seedorf; Jay Y. Westcott; John B. Trudeau; Phil Silkoff; Sally E. Wenzel

The transforming growth factor (TGF)-beta family is important for tissue repair in pathological conditions including asthma. However, little is known about the impact of either TGF-beta1 or TGF-beta2 on asthmatic airway epithelial mucin expression. We evaluated bronchial epithelial TGF-beta1 and TGF-beta2 expression and their effects on mucin expression, and the role of TGF-beta1 or TGF-beta2 in interleukin (IL)-13-induced mucin expression. Epithelial TGF-beta1, TGF-beta2, and mucin expression were evaluated in endobronchial biopsies from asthmatics and normal subjects. The effects of TGF-beta1 or TGF-beta2 on mucin MUC5AC protein and mRNA expression, and the impact of IL-13 on epithelial TGF-beta1, TGF-beta2, and MUC5AC were determined in cultured bronchial epithelial cells from endobronchial brushings of both subject groups. In biopsy tissue, epithelial TGF-beta2 expression levels were higher than TGF-beta1 in both asthmatics and normals. TGF-beta2, but not TGF-beta1, was increased in asthmatics compared with normals, and significantly correlated with mucin expression. TGF-beta2, but not TGF-beta1, increased mucin expression in cultured epithelial cells from both subject groups. IL-13 increased the release of TGF-beta2, but not TGF-beta1, from epithelial cells. A neutralizing TGF-beta2 antibody partially inhibited IL-13-induced mucin expression. These data suggest that TGF-beta2 production by asthmatic bronchial epithelial cells may increase airway mucin expression. IL-13-induced mucin expression may occur in part through TGF-beta2 up-regulation.


Clinical & Experimental Allergy | 2008

IL‐13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells

Kazuyuki Chibana; John B. Trudeau; A. T. Mustovitch; Haizhen Hu; Jinming Zhao; Silvana Balzar; H. W. Chu; Sally E. Wenzel

Background Exhaled nitric oxide is increased in asthma, but the mechanisms controlling its production, including the effects of T‐helper type 2 (Th2) cytokines, are poorly understood. In mouse and submerged human epithelial cells, Th2 cytokines inhibit expression of inducible nitric oxide synthase (iNOS). Arginases have been proposed to contribute to asthma pathogenesis by limiting the arginine substrate available to NOS enzymes, but expression of any of these enzymes has not been extensively studied in primary human cells.


The Journal of Allergy and Clinical Immunology | 2013

Prostaglandin D2 pathway upregulation: Relation to asthma severity, control, and TH2 inflammation

Merritt L. Fajt; Stacy L. Gelhaus; Bruce A. Freeman; Crystal E. Uvalle; John B. Trudeau; Fernando Holguin; Sally E. Wenzel

BACKGROUND Bronchoalveolar lavage (BAL) fluid prostaglandin D₂(PGD₂) levels are increased in patients with severe, poorly controlled asthma in association with epithelial mast cells (MCs). PGD₂, which is generated by hematopoietic prostaglandin D synthase (HPGDS), acts on 3 G protein-coupled receptors, including chemoattractant receptor-homologous molecule expressed on TH2 lymphocytes (CRTH2) and PGD₂ receptor 1 (DP1). However, much remains to be understood regarding the presence and activation of these pathway elements in asthmatic patients. OBJECTIVE We sought to compare the expression and activation of PGD₂ pathway elements in bronchoscopically obtained samples from healthy control subjects and asthmatic patients across a range of disease severity and control, as well as in relation to TH2 pathway elements. METHODS Epithelial cells and BAL fluid were evaluated for HPGDS (quantitative real-time PCR/immunohistochemistry [IHC]) and PGD₂ (ELISA/liquid chromatography mass spectrometry) in relation to levels of MC proteases. Expression of the 2 inflammatory cell receptors DP1 and CRTH2 was evaluated on luminal cells. These PGD₂ pathway markers were then compared with asthma severity, level of control, and markers of TH2 inflammation (blood eosinophils and fraction of exhaled nitric oxide). RESULTS Confirming previous results, BAL fluid PGD₂ levels were highest in patients with severe asthma (overall P = .0001). Epithelial cell compartment HPGDS mRNA and IHC values differed among groups (P = .008 and P < .0001, respectively) and correlated with MC protease mRNA. CRTH2 mRNA and IHC values were highest in patients with severe asthma (P = .001 and P = .0001, respectively). Asthma exacerbations, poor asthma control, and TH2 inflammatory markers were associated with higher PGD₂, HPGDS, and CRTH2 levels. CONCLUSION The current study identifies coordinated upregulation of the PGD₂ pathway in patients with severe, poorly controlled, TH2-high asthma despite corticosteroid use.


Journal of Clinical Investigation | 2015

High IFN-γ and low SLPI mark severe asthma in mice and humans

Mahesh Raundhal; Christina Morse; Anupriya Khare; Timothy B. Oriss; Jadranka Milosevic; John B. Trudeau; Rachael Huff; Joseph M. Pilewski; Fernando Holguin; Jay K. Kolls; Sally E. Wenzel; Prabir Ray; Anuradha Ray

Severe asthma (SA) is a challenge to control, as patients are not responsive to high doses of systemic corticosteroids (CS). In contrast, mild-moderate asthma (MMA) is responsive to low doses of inhaled CS, indicating that Th2 cells, which are dominant in MMA, do not solely orchestrate SA development. Here, we analyzed broncholalveolar lavage cells isolated from MMA and SA patients and determined that IFN-γ (Th1) immune responses are exacerbated in the airways of individuals with SA, with reduced Th2 and IL-17 responses. We developed a protocol that recapitulates the complex immune response of human SA, including the poor response to CS, in a murine model. Compared with WT animals, Ifng-/- mice subjected to this SA model failed to mount airway hyperresponsiveness (AHR) without appreciable effect on airway inflammation. Conversely, AHR was not reduced in Il17ra-/- mice, although airway inflammation was lower. Computer-assisted pathway analysis tools linked IFN-γ to secretory leukocyte protease inhibitor (SLPI), which is expressed by airway epithelial cells, and IFN-γ inversely correlated with SLPI expression in SA patients and the mouse model. In mice subjected to our SA model, forced SLPI expression decreased AHR in the absence of CS, and it was further reduced when SLPI was combined with CS. Our study identifies a distinct immune response in SA characterized by a dysregulated IFN-γ/SLPI axis that affects lung function.


American Journal of Respiratory and Critical Care Medicine | 2009

Interleukin-13–induced MUC5AC Is Regulated by 15-Lipoxygenase 1 Pathway in Human Bronchial Epithelial Cells

Jinming Zhao; Ben Maskrey; Silvana Balzar; Kazuyuki Chibana; Anthony Mustovich; Haizhen Hu; John B. Trudeau; Valerie Bridget O'Donnell; Sally E. Wenzel

RATIONALE 15-Lipoxygenase-1 (15LO1) and MUC5AC are highly expressed in asthmatic epithelial cells. IL-13 is known to induce 15LO1 and MUC5AC in human airway epithelial cells in vitro. Whether 15LO1 and/or its product 15-HETE modulate MUC5AC expression is unknown. OBJECTIVES To determine the expression of 15LO1 in freshly harvested epithelial cells from subjects with asthma and normal control subjects and to determine whether IL-13-induced 15LO1 expression and activation regulate MUC5AC expression in human bronchial epithelial cells in vitro. METHODS Human airway epithelial cells from subjects with asthma and normal subjects were evaluated ex vivo for 15LO1 and MUC5AC expression. The impact of 15LO1 on MUC5AC expression in vitro was analyzed by inhibiting 15LO1 through pharmacologic (PD146176) and siRNA approaches in human bronchial epithelial cells cultured under air-liquid interface. We analyzed 15 hydroxyeicosatetraenoic acid (15-HETE) by liquid chromatography/UV/mass spectrometry. MUC5AC and 15LO1 were analyzed by real-time RT-PCR, immunofluoresence, and Western blot. MEASUREMENTS AND MAIN RESULTS Epithelial 15LO1 expression increased with asthma severity (P < 0.0001). 15LO1 significantly correlated with MUC5AC ex vivo and in vitro. IL-13 increased 15LO1 expression and stimulated formation of two molecular species of 15-HETE esterified to phosphotidylethanolamine (15-HETE-PE). Inhibition of 15LO1 suppressed 15-HETE-PE and decreased MUC5AC expression in the presence of IL-13 stimulation. The addition of exogenous 15-HETE partially restored MUC5AC expression. CONCLUSIONS Epithelial 15LO1 expression increases with increasing asthma severity. IL-13 induction of 15-HETE-PE enhances MUC5AC expression in human airway epithelial cells. High levels of 15LO1 activity could contribute to the increases of MUC5AC observed in asthma.


The Journal of Allergy and Clinical Immunology | 1996

Theophylline: Potential antiinflammatory effects in nocturnal asthma

Monica Kraft; Julie Torvik; John B. Trudeau; Sally E. Wenzel; Richard J. Martin

BACKGROUND Recent information suggests that one of the therapeutic properties of theophylline is an antiinflammatory effect. OBJECTIVE We evaluated this potential effect of theophylline in eight patients with nocturnal asthma. METHODS The study design was a randomized, double-blind, placebo-controlled crossover of 2-week treatment periods, separated by a 1-week washout period. Spirometry and bronchoscopy were performed. RESULTS Theophylline, compared with placebo, significantly improved the overnight decrement in lung function. The higher the nocturnal theophylline level, the greater the improvement in lung function. Theophylline also significantly decreased the percentage of neutrophils in the 4:00 AM bronchoalveolar lavage fluid and stimulated leukotriene B4 levels from macrophages obtained at 4:00 AM. The greater change in neutrophils correlated with increasing serum theophylline concentration. Also, the change in leukotriene B4 production was significantly correlated with the theophylline-induced decrement in lavage granulocytes (neutrophils and eosinophils). CONCLUSION This study suggests that one action of theophylline is to alter inflammatory cell number and function in nocturnal asthma and that it may do this through an leukotriene B4-mediated mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2011

15-Lipoxygenase 1 interacts with phosphatidylethanolamine-binding protein to regulate MAPK signaling in human airway epithelial cells

Jinming Zhao; Valerie Bridget O'Donnell; Silvana Balzar; Claudette M. St. Croix; John B. Trudeau; Sally E. Wenzel

Epithelial 15-lipoxygenase 1 (15LO1) and activated ERK are increased in asthma despite modest elevations in IL-13. MAPK kinase (MEK)/ERK activation is regulated by interactions of Raf-1 with phosphatidylethanolamine-binding protein 1 (PEBP1). Epithelial 15LO1 generates intracellular 15-hydroxyeicosatetraenoic acid (15HETE) conjugated to phosphatidylethanolamine (PE) (15HETE–PE). We hypothesized that (i) 15LO1 and its product 15HETE–PE serve as signaling molecules interacting with PEBP1 to activate Raf-1/MEK/ERK and that (ii) this 15LO1–15HETE–PE-regulated ERK activation amplifies IL-4Rα downstream pathways. Our results demonstrate that high epithelial 15LO1 levels correlate with ERK phosphorylation ex vivo. In vitro, IL-13 induces 15LO1, which preferentially binds to PEBP1, causing PEBP1 to dissociate from Raf-1 and activate ERK. Exogenous 15HETE–PE similarly induces dissociation of PEBP1 from Raf-1 independently of IL-13/15LO1. siRNA knockdown of 15LO1 decreases the dissociation of Raf-1 from PEBP1, and the resulting lower ERK activation leads to lower downstream IL-4Rα–related gene expression. Identical protein–protein interactions are observed in endobronchial biopsies and fresh epithelial cells from asthmatics ex vivo. Colocalization of Raf-1 to PEBP1 is low in asthmatic tissue and cells compared with normals, whereas there is striking colocalization of 15LO1 with PEBP1 in asthma. Low 15LO1 levels in normals limit its colocalization with PEBP1. The results confirm a previously unknown signaling role for 15LO1 and its PE-conjugated eicosanoid product in human airway epithelial cells. This pathway enhances critical inflammatory pathways integral to asthma pathogenesis.


Thorax | 2012

Epithelial eotaxin-2 and eotaxin-3 expression: relation to asthma severity, luminal eosinophilia and age at onset

John M. Coleman; Chetan Naik; Fernando Holguin; Anuradha Ray; Prabir Ray; John B. Trudeau; Sally E. Wenzel

Background Eosinophilic inflammation is implicated in asthma. Eotaxin 1–3 regulate eosinophil trafficking into the airways along with other chemotactic factors. However, the epithelial and bronchoalveolar lavage (BAL) cell expression of these chemokines in relation to asthma severity and eosinophilic phenotypes has not been addressed. Objective To measure the expression of the three eotaxin isoforms in bronchoscopically obtained samples and compare them with clinically relevant parameters between normal subjects and patients with asthma. Methods Normal subjects and patients with asthma of varying severity recruited through the Severe Asthma Research Program underwent clinical assessment and bronchoscopy with airway brushing and BAL. Eotaxin 1–3 mRNA/protein were measured in epithelial and BAL cells and compared with asthma severity, control and eosinophilic inflammation. Results Eotaxin-2 and eotaxin-3 mRNA and eotaxin-2 protein were increased in airway epithelial brushings from patients with asthma and were highest in cases of severe asthma (p values 0.0155, 0.0033 and 0.0006, respectively), with eotaxin-2 protein increased with age at onset. BAL cells normally expressed high levels of eotaxin-2 mRNA/protein but BAL fluid levels of eotaxin-2 were lowest in severe asthma. Epithelial eotaxin-2 and eotaxin-3 mRNA/protein was associated with sputum eosinophilia, lower forced expiratory volume in 1 s and more asthma exacerbations. Airway epithelial cell eotaxin-2 protein differed by asthma severity only in those with late onset disease, and tended to be highest in those with late onset eosinophilic asthma. Conclusions Epithelial eotaxin-2 and 3 are increased in asthma and severe asthma. Their expression may contribute to luminal migration of eosinophils, especially in later onset disease, asthma control and severity.


Mucosal Immunology | 2014

An Airway Epithelial iNOS-DUOX2-Thyroid Peroxidase Metabolome Drives Th1/Th2 Nitrative Stress in Human Severe Asthma

N. Voraphani; Mark T. Gladwin; Au Contreras; Naftali Kaminski; John Tedrow; Jadranka Milosevic; Eugene R. Bleecker; Deborah A. Meyers; Anuradha Ray; Prabir Ray; Serpil C. Erzurum; William W. Busse; Jinming Zhao; John B. Trudeau; Sally E. Wenzel

Severe refractory asthma is associated with enhanced nitrative stress. To determine the mechanisms for high nitrative stress in human severe asthma (SA), 3-nitrotyrosine (3NT) was compared with Th1 and Th2 cytokine expression. In SA, high 3NT levels were associated with high interferon (IFN)-γ and low interleukin (IL)-13 expression, both of which have been reported to increase inducible nitric oxide synthase (iNOS) in human airway epithelial cells (HAECs). We found that IL-13 and IFN-γ synergistically enhanced iNOS, nitrite, and 3NT, corresponding with increased H2O2. Catalase inhibited whereas superoxide dismutase enhanced 3NT formation, supporting a critical role for H2O2, but not peroxynitrite, in 3NT generation. Dual oxidase-2 (DUOX2), central to H2O2 formation, was also synergistically induced by IL-13 and IFN-γ. The catalysis of nitrite and H2O2 to nitrogen dioxide radical (NO2•) requires an endogenous peroxidase in this epithelial cell system. Thyroid peroxidase (TPO) was identified by microarray analysis ex vivo as a gene distinguishing HAEC of SA from controls. IFN-γ induced TPO in HAEC and small interfering RNA knockdown decreased nitrated tyrosine residues. Ex vivo, DUOX2, TPO, and iNOS were higher in SA and correlated with 3NT. Thus, a novel iNOS–DUOX2–TPO–NO2• metabolome drives nitrative stress in HAEC and likely in SA.


Mucosal Immunology | 2014

The complex relationship between inflammation and lung function in severe asthma

Michelle L. Manni; John B. Trudeau; Erich V. Scheller; Sivanarayana Mandalapu; M. Merle Elloso; Jay K. Kolls; Sally E. Wenzel; John F. Alcorn

Asthma is a common respiratory disease affecting ∼300 million people worldwide. Airway inflammation is thought to contribute to asthma pathogenesis, but the direct relationship between inflammation and airway hyperresponsiveness (AHR) remains unclear. This study investigates the role of inflammation in a steroid-insensitive, severe allergic airway disease model and in severe asthmatics stratified by inflammatory profile. First, we used the T-helper (TH)-17 cells adoptive transfer mouse model of asthma to induce pulmonary inflammation, which was lessened by tumor necrosis factor (TNF)-α neutralization or neutrophil depletion. Although decreased airspace inflammation following TNFα neutralization and neutrophil depletion rescued lung compliance, neither intervention improved AHR to methacholine, and tissue inflammation remained elevated when compared with control. Further, sputum samples were collected and analyzed from 41 severe asthmatics. In severe asthmatics with elevated levels of sputum neutrophils, but low levels of eosinophils, increased inflammatory markers did not correlate with worsened lung function. This subset of asthmatics also had significantly higher levels of TH17-related cytokines in their sputum compared with severe asthmatics with other inflammatory phenotypes. Overall, this work suggests that lung compliance may be linked with cellular inflammation in the airspace, whereas T-cell-driven AHR may be associated with tissue inflammation and other pulmonary factors.

Collaboration


Dive into the John B. Trudeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvana Balzar

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Haizhen Hu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jinming Zhao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Wei Chu

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuxia Zhou

Anschutz Medical Campus

View shared research outputs
Researchain Logo
Decentralizing Knowledge