John Brammer
Aston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Brammer.
Renewable & Sustainable Energy Reviews | 2002
A.V. Bridgwater; A.J. Toft; John Brammer
This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.
Biomass & Bioenergy | 2002
John Brammer; A.V. Bridgwater
Abstract The need to dry biomass feedstocks before they can be gasified can place a large energy and capital cost burden on small-to-medium scale biomass gasification plants for the production of heat and power. Drying may not always be unavoidable, but as biomass moisture content to the gasifier increases, the quality of the product gas deteriorates along with the overall performance of the whole system. This system modelling study addresses the influence of feedstock moisture content both before and after drying on the performance and cost of a biomass gasifier–engine system for combined heat and power at a given scale and feedstock cost. The scale range considered 0.5– 3.0 MW e . The system comprises an updraft gasifier with external thermal and catalytic tar cracking reactors, gas clean-up and a spark-ignition gas engine. A spreadsheet-based system model is constructed, with individual worksheets corresponding to sub-models of system components, and a number of drying technology options and modes of operation are examined. Wherever possible, data supplied by manufacturers or taken from real systems is used in the construction of the sub-models, particularly in the derivation of cost functions.
Bioresource Technology | 2014
Yang Yang; John Brammer; A.S.N. Mahmood; Andreas Hornung
This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.
Biomass & Bioenergy | 2010
Leena Fagernäs; John Brammer; C. Wilén; M. Lauer; F. Verhoeff
Biomass & Bioenergy | 2012
J.G. Rogers; John Brammer
Biomass & Bioenergy | 2009
J.G. Rogers; John Brammer
Energy Policy | 2006
John Brammer; M. Lauer; A.V. Bridgwater
In: Sustainable Energy UK: Meeting the Science and Engineering Challenge: Sustainable Energy UK: Meeting the Science and Engineering Challenge; Oxford, UK. UKERC; 2008. | 2009
Patricia Thornley; Paul Upham; Ye Huang; Sina Rezvani; John Brammer; John Rogers
Fuel | 2013
Yang Yang; John Brammer; Miloud Ouadi; J. Samanya; Andreas Hornung; Hongming Xu; Yanfei Li
Fuel | 2013
Abul Hossain; Miloud Ouadi; S.U. Siddiqui; Yang Yang; John Brammer; Andreas Hornung; M. Kay; Philip Davies