John Bridgeman
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Bridgeman.
Science of The Total Environment | 2009
Magdalena Bieroza; Andy Baker; John Bridgeman
Monthly raw and clarified water samples were obtained for 16 UK surface water treatment works. The fluorescence excitation-emission matrix (EEM) technique was used for the assessment of total organic carbon (TOC) removal and organic matter (OM) characterisation. The impact of algae presence in water on TOC removal, and its relationship with fluorescence, was analysed. Fluorescence peak C intensity was found to be a sensitive and reliable measure of OM content. Fluorescence peak C emission wavelength and peak T intensity (reflecting the degree of hydrophobicity and the microbial fraction, respectively) were found to characterize the OM; the impact of both on TOC removal efficiency was apparent. OM fluorescence properties were shown to predict TOC removal, and identify spatial and temporal variations. Previous work indicates that the trihalomethane (THM) concentration of treated water can be predicted from the raw water TOC concentration. The simplicity, sensitivity, speed of analysis and low cost, combined with potential for incorporation into on-line monitoring systems, mean that fluorescence spectroscopy offers a robust analytical technique to be used in conjunction with, or in place of, other approaches to OM characterisation and THM formation prediction.
Environmental Technology | 2013
John Bridgeman; Andy Baker; Cynthia Carliell-Marquet; Elfrida M. Carstea
Fluorescence spectroscopy was used to characterize municipal wastewater at various stages of treatment in order to understand how its fluorescence signature changes with treatment and how the signal relates to biochemical oxygen demand (BOD) and chemical oxygen demand (COD). The impact of size fractionation on the fluorescence signal was also investigated. Fluorescence measurements were taken for unfiltered and filtered (0.45 and 0.20 μm) samples of crude, settled and secondary treated wastewater (activated sludge and trickling filter), and final effluent. Good correlations were observed for unfiltered, diluted wastewater samples between BOD and fluorescence intensity at excitation 280 nm, emission 350 nm (Peak T1) (r=0.92) and between COD and Peak T1 intensity (r=0.85). The majority of the T1 and T2 signal was found to be derived from the<0.20 μm fraction. Initial results indicate that fluorescence spectroscopy, and changes in Peak T1 intensity in particular, could be used for continuous, real-time wastewater quality assessment and process control of wastewater treatment works.
Engineering Applications of Computational Fluid Mechanics | 2009
John Bridgeman; Bruce Jefferson; Simon A. Parsons
Abstract The principal focus of this paper is to present a critical review of current approaches to modelling the inter-related hydrodynamic, physical and chemical processes involved in the flocculation of water using Computational Fluid Dynamics (CFD). The flows inside both laboratory and full scale mechanically-mixed flocculators are complex and pose significant challenges to modellers. There exists a body of published work which considers the bulk flow patterns, primarily at laboratory scale. However, there is little reported multiphase modelling at either scale. Two-equation turbulence modelling has been found to produce variable results in comparison with experimental data, due to the anisotropic nature of the swirling flow. However, the computational expense of combining the sliding mesh treatment for a rotating mesh with the Reynolds Stress Model (RSM) in a full scale unit is great, even when using a high performance computing facility. Future work should focus more on the multiphase modelling aspects. Whilst opportunities exist for particle tracking using a Lagrangian model, few workers have attempted this. The fractal nature of flocs poses limitations on the accuracy of the results generated and, in particular, the impacts of density and porosity on drag force and settlement characteristics require additional work. There is significant scope for the use of coupled population balance models and CFD to develop water treatment flocculation models. Results from related work in the wastewater flocculation field are encouraging.
Environmental Technology | 2012
Susan A. Cumberland; John Bridgeman; Andy Baker; Mark Sterling; David Ward
Building on previous work where fluorescence spectroscopy has been used to detect sewage in rivers, a portable LED spectrophotometer was used for the first time to establish bacterial numbers in a range of water samples. A mixed-method approach was used with standard bacteria enumeration techniques on diluted river water and sewage works final effluent using a number of diluents (Ringers solution, tap water and potable spring water). Fluorescence from uncultured dilutions was detected at a 280 nm excitation/360 nm emission wavelength (corresponding to the region of tryptophan and indole fluorescence) and compared with bacteria numbers on the same cultured sample. Good correlations were obtained for total coliforms, E. coli and heterotrophic bacteria with the portable LED spectrophotometer (R 2=0.78, 0.72 and 0.81 respectively). The results indicate that the portable spectrophotometer could be applied to establish the quality of drinking water in areas of poor sanitation that are subject to faecal contamination, where infrastructure failure has occurred in the supply of clean drinking water. This would be particularly useful where laboratory facilities are not at hand.
Science of The Total Environment | 2015
Andy Baker; Susan A. Cumberland; Chris Bradley; C. A. Buckley; John Bridgeman
The intrinsic fluorescence of aquatic organic matter emitted at 350 nm when excited at 280 nm correlates widely with water quality parameters such as biochemical oxygen demand. Hence, in sewage-impacted rivers and groundwater, it might be expected that fluorescence at these wavelengths will also correlate with the microbial water quality. In this paper we use a portable fluorimeter to assess the relationship between fluorescence intensity at this wavelength pair and Escherichia coli enumeration in contrasting river catchments of poor water quality: in KwaZulu-Natal, S. Africa and the West Midlands, UK. Across all catchments we demonstrate a log correlation (r = 0.74) between fluorescence intensity and E. coli over a seven-log range in E. coli enumerations on non-perturbed (unfiltered) samples. Within specific catchments, the relationship between fluorescence intensity and E. coli is more variable, demonstrating the importance of catchment-specific interference. Our research demonstrates the potential of using a portable fluorimeter as an initial screening tool for indicative microbial water quality, and one that is ideally suited to simple pollution scenarios such as assessing the impact of faecal contamination in river or groundwater at specific sites.
Water Research | 2014
Elfrida M. Carstea; Andy Baker; Magdalena Bieroza; Darren M. Reynolds; John Bridgeman
The fluorescence intensity of dissolved organic matter (DOM) in aqueous samples is known to be highly influenced by temperature. Although several studies have demonstrated the effect of thermal quenching on the fluorescence of DOM, no research has been undertaken to assess the effects of temperature by combining fluorescence excitation - emission matrices (EEM) and parallel factor analysis (PARAFAC) modelling. This study further extends previous research on thermal quenching by evaluating the impact of temperature on the fluorescence of DOM from a wide range of environmental samples, in the range 20 °C - 0 °C. Fluorescence intensity increased linearly with respect to temperature decrease at all temperatures down to 0 °C. Results showed that temperature affected the PARAFAC components associated with humic-like and tryptophan-like components of DOM differently, depending on the water type. The terrestrial humic-like components, C1 and C2 presented the highest thermal quenching in rural water samples and the lowest in urban water samples, while C3, the tryptophan-like component, and C4, a reprocessed humic-like component, showed opposite results. These results were attributed to the availability and abundance of the components or to the degree of exposure to the heat source. The variable thermal quenching of the humic-like components also indicated that although the PARAFAC model generated the same components across sites, the DOM composition of each component differed between them. This study has shown that thermal quenching can provide additional information on the characteristics and composition of DOM and highlighted the importance of correcting fluorescence data collected in situ.
Urban Water Journal | 2009
Benjamin J. Courtis; J.R. West; John Bridgeman
The potential carcinogenicity of trihalomethanes (THMs) has led to increasingly stricter regulation of drinking water supplies. This has led to the need to manage better the chemical and microbiological risk balance in chlorinated supplies. The use of empirical equations to predict THM concentrations in water quality models is challenging and expensive due to the numerous temporally and spatially dependent uncertainties involved. In this paper, the benefits of a simple predictive method using a THM productivity parameter based on chlorine consumed by bulk free chlorine reactions are explored using extensive field data from a water distribution system in the Midlands region of the UK. It is concluded that the productivity parameter provides an appropriate, relatively robust, yet straightforward alternative to the use of an empirical equation based on regression analyses to predict THM concentrations in distribution, and that the method has the potential to help distribution system water quality model calibration.
Journal of Environmental Engineering | 2011
Magdalena Bieroza; Andy Baker; John Bridgeman
Optimization of organic matter (OM) removal is of key importance for effective water treatment, as its presence affects treatment processes. In particular, OM increases the operational cost of treatment caused by increased coagulant and disinfectant demands. In the work reported here, fluorescence spectroscopy is used to assess the effect of changing coagulation pH on OM removal, character, and composition. The results of a 3-month trial of low pH coagulation operation at a major surface water treatment works in the Midlands region of the UK are discussed, together with the effect upon total organic carbon (TOC) removal. OM removal was assessed on the basis of both measured removal and fluorescence-inferred removal (through intensity-reduction measurements). Fluorescence spectroscopy demonstrated that optimized coagulation affects the quantitative and qualitative OM properties. Fluorescence analyses were shown to complement other OM measurements, with reductions of peak intensities correlating well with removal of TOC in a range of different treatment conditions.
Journal of Hydraulic Engineering | 2013
Michael Jesson; Mark Sterling; John Bridgeman
AbstractPhysical and numerical simulations of open channel flow over a heterogeneously roughened bed are examined. The velocity field is mapped at four different cross sections by using an acoustic Doppler velocimeter and the boundary shear stress obtained from both the velocity data and application of a Preston tube. These data illustrate that in the current arrangement the roughness elements dominate the physics of the flow and act as a source of vorticity, which is initially manifested as local boundary shear stress and, in turn, affects the secondary flow structures and momentum transfer in the channel. This paper presents the first attempt at using the Shiono–Knight method to model velocity and boundary shear stress distributions in a heterogeneous open channel. Appropriate advice concerning values of calibration parameters and discretization of the cross section is given. The combined physical/numerical approach provides an insight into the changing properties of the flow structure within a nonunifo...
Radiocarbon | 2011
Andy Baker; Pauline Gulliver; Philippa L. Ascough; Jessie Roe; John Bridgeman
Radiocarbon analysis of freshwater dissolved organic carbon (DOC) involves substantial sample pretreatment, including an initial rotary evaporation stage necessary to concentrate large volumes of freshwater sample. This may lead to a health risk from the exposure to pathogens, and there is the additional concern that the warm conditions during the rotary evaporation stage may provide ideal growing conditions for some pathogens. To remove any pathogen risk in water samples, boiling or autoclaving can be undertaken. However, to date, no studies have been undertaken to investigate whether boiling will alter the 14C signature of dissolved organic carbon. Here, we analyze the effect of sterilization on 9 contrasting river water samples. Comparing filtered, filtered and boiled, and filtered and sterilized dissolved organic matter, we observe that both boiling and autoclaving increases the uncertainty associated with the 14C and 13C of DOC, that the 14C and 13C changes are not unidirectional, and that they are not related to original DOC composition. Neither sterilization method is recommended unless essential, in which instance we recommend a 3 σ uncertainty on 14C and that the 13C is not considered representative of the original sample.