Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Gensel is active.

Publication


Featured researches published by John C. Gensel.


The Journal of Neuroscience | 2009

Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord

Kristina A. Kigerl; John C. Gensel; Daniel P. Ankeny; Jessica K. Alexander; Phillip G. Popovich

Macrophages dominate sites of CNS injury in which they promote both injury and repair. These divergent effects may be caused by distinct macrophage subsets, i.e., “classically activated” proinflammatory (M1) or “alternatively activated” anti-inflammatory (M2) cells. Here, we show that an M1 macrophage response is rapidly induced and then maintained at sites of traumatic spinal cord injury and that this response overwhelms a comparatively smaller and transient M2 macrophage response. The high M1/M2 macrophage ratio has significant implications for CNS repair. Indeed, we present novel data showing that only M1 macrophages are neurotoxic and M2 macrophages promote a regenerative growth response in adult sensory axons, even in the context of inhibitory substrates that dominate sites of CNS injury (e.g., proteoglycans and myelin). Together, these data suggest that polarizing the differentiation of resident microglia and infiltrating blood monocytes toward an M2 or “alternatively” activated macrophage phenotype could promote CNS repair while limiting secondary inflammatory-mediated injury.


The Journal of Neuroscience | 2008

Cell Death after Spinal Cord Injury Is Exacerbated by Rapid TNFα-Induced Trafficking of GluR2-Lacking AMPARs to the Plasma Membrane

Adam R. Ferguson; Randolph N. Christensen; John C. Gensel; Brandon A. Miller; Fang Sun; Eric C. Beattie; Jacqueline C. Bresnahan; Michael S. Beattie

Glutamate, the major excitatory neurotransmitter in the CNS, is implicated in both normal neurotransmission and excitotoxicity. Numerous in vitro findings indicate that the ionotropic glutamate receptor, AMPAR, can rapidly traffic from intracellular stores to the plasma membrane, altering neuronal excitability. These receptor trafficking events are thought to be involved in CNS plasticity as well as learning and memory. AMPAR trafficking has recently been shown to be regulated by glial release of the proinflammatory cytokine tumor necrosis factor α (TNFα) in vitro. This has potential relevance to several CNS disorders, because many pathological states have a neuroinflammatory component involving TNFα. However, TNFα-induced trafficking of AMPARs has only been explored in primary or slice cultures and has not been demonstrated in preclinical models of CNS damage. Here, we use confocal and image analysis techniques to demonstrate that spinal cord injury (SCI) induces trafficking of AMPARs to the neuronal membrane. We then show that this effect is mimicked by nanoinjections of TNFα, which produces specific trafficking of GluR2-lacking receptors which enhance excitotoxicity. To determine if TNFα-induced trafficking affects neuronal cell death, we sequestered TNFα after SCI using a soluble TNFα receptor, and significantly reduced both AMPAR trafficking and neuronal excitotoxicity in the injury penumbra. The data provide the first evidence linking rapid TNFα-induced AMPAR trafficking to early excitotoxic secondary injury after CNS trauma in vivo, and demonstrate a novel way in which pathological states hijack mechanisms involved in normal synaptic plasticity to produce cell death.


The Journal of Neuroscience | 2009

Macrophages promote axon regeneration with concurrent neurotoxicity.

John C. Gensel; S. Nakamura; Zhen Guan; N. van Rooijen; Daniel P. Ankeny; Phillip G. Popovich

Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally document the concurrent neurotoxic and neuroregenerative potential of activated macrophages. To do so, we quantified the length and magnitude of axon growth from enhanced green fluorescent protein-expressing dorsal root ganglion (DRG) neurons transplanted into the spinal cord in relationship to discrete foci of activated macrophages. Macrophages were activated via intraspinal injections of zymosan, a potent inflammatory stimulus known to increase axon growth and cause neurotoxicity. Using this approach, a significant increase in axon growth up to macrophage foci was evident. Within and adjacent to macrophages, DRG and spinal cord axons were destroyed. Macrophage toxicity became more evident when zymosan was injected closer to DRG soma. Under these conditions, DRG neurons were killed or their ability to extend axons was dramatically impaired. The concurrent induction of pro-regenerative and neurotoxic functions in zymosan-activated macrophages (ZAMs) was confirmed in vitro using DRG and cortical neurons. Importantly, the ability of ZAMs to stimulate axon growth was transient; prolonged exposure to factors produced by ZAMs enhanced cell death and impaired axon growth in surviving neurons. Lipopolysaccharide, another potent macrophage activator, elicited a florid macrophage response, but without enhancing axon growth or notable toxicity. Together, these data show that a single mode of activation endows macrophages with the ability to simultaneously promote axon regeneration and cell killing.


Brain Research | 2015

Macrophage activation and its role in repair and pathology after spinal cord injury.

John C. Gensel; Bei Zhang

The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.


Experimental Neurology | 2004

Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration

Caitlin E. Hill; Christoph Pröschel; Mark Noble; Margot Mayer-Pröschel; John C. Gensel; Michael S. Beattie; Jacqueline C. Bresnahan

Transplantation of stem cells and immature cells has been reported to ameliorate tissue damage, induce axonal regeneration, and improve locomotion following spinal cord injury. However, unless these cells are pushed down a neuronal lineage, the majority of cells become glia, suggesting that the alterations observed may be potentially glially mediated. Transplantation of glial-restricted precursor (GRP) cells--a precursor cell population restricted to oligodendrocyte and astrocyte lineages--offers a novel way to examine the effects of glial cells on injury processes and repair. This study examines the survival and differentiation of GRP cells, and their ability to modulate the development of the lesion when transplanted immediately after a moderate contusion injury of the rat spinal cord. GRP cells isolated from a transgenic rat that ubiquitously expresses heat-stable human placental alkaline phosphatase (PLAP) were used to unambiguously detect transplanted GRP cells. Following transplantation, some GRP cells differentiated into oligodendrocytes and astrocytes, retaining their differentiation potential after injury. Transplanted GRP cells altered the lesion environment, reducing astrocytic scarring and the expression of inhibitory proteoglycans. Transplanted GRP cells did not induce long-distance regeneration from corticospinal tract (CST) and raphe-spinal axons when compared to control animals. However, GRP cell transplants did alter the morphology of CST axons toward that of growth cones, and CST fibers were found within GRP cell transplants, suggesting that GRP cells may be able to support axonal growth in vivo after injury.


Journal of Neuroscience Methods | 2009

An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology

John C. Gensel; Daniel P. Ankeny; Nico van Rooijen; Phillip G. Popovich

Historically, microglia/macrophages are quantified in the pathological central nervous system (CNS) by counting cell profiles then expressing the data as cells/mm(2). However, because it is difficult to visualize individual cells in dense clusters and in most cases it is unimportant to know the absolute number of macrophages within lesioned tissue, alternative methods may be more efficient for quantifying the magnitude of the macrophage response in the context of different experimental variables (e.g., therapeutic intervention or time post-injury/infection). The present study provides the first in-depth comparison of different techniques commonly used to quantify microglial/macrophage reactions in the pathological spinal cord. Individuals from the same and different laboratories applied techniques of digital image analysis (DIA), standard cell profile counting and a computer-assisted cell counting method with unbiased sampling to quantify macrophages in focal inflammatory lesions, disseminated lesions caused by autoimmune inflammation or at sites of spinal trauma. Our goal was to find a simple, rapid and sensitive method with minimal variability between trials and users. DIA was consistently the least variable and most time-efficient method for assessing the magnitude of macrophage responses across lesions and between users. When used to evaluate the efficacy of an anti-inflammatory treatment, DIA was 5-35 x faster than cell counting and was sensitive enough to detect group differences while eliminating inter-user variability. Since lesions are clearly defined and single profiles of microglia/macrophages are difficult to discern in most pathological specimens of brain or spinal cord, DIA offers significant advantages over other techniques for quantifying activated macrophages.


Biological Psychiatry | 2014

Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia.

Ashley M. Fenn; John C. Gensel; Yan Huang; Phillip G. Popovich; Jonathan Lifshitz; Jonathan P. Godbout

BACKGROUND Traumatic brain injury (TBI) is associated with a higher incidence of depression. The majority of individuals who suffer a TBI are juveniles and young adults, and thus, the risk of a lifetime of depressive complications is a significant concern. The etiology of increased TBI-associated depression is unclear but may be inflammatory-related with increased brain sensitivity to secondary inflammatory challenges (e.g., stressors, infection, and injury). METHODS Adult male BALB/c mice received a sham (n = 52) or midline fluid percussion injury (TBI; n = 57). Neuroinflammation, motor coordination (rotarod), and depressive behaviors (social withdrawal, immobility in the tail suspension test, and anhedonia) were assessed 4 hours, 24 hours, 72 hours, 7 days, or 30 days later. Moreover, 30 days after surgery, sham and TBI mice received a peripheral injection of saline or lipopolysaccharide (LPS) and microglia activation and behavior were determined. RESULTS Diffuse TBI caused inflammation, peripheral cell recruitment, and microglia activation immediately after injury coinciding with motor coordination deficits. These transient events resolved within 7 days. Nonetheless, 30 days post-TBI a population of deramified and major histocompatibility complex II(+) (primed) microglia were detected. After a peripheral LPS challenge, the inflammatory cytokine response in primed microglia of TBI mice was exaggerated compared with microglia of controls. Furthermore, this LPS-induced microglia reactivity 30 days after TBI was associated with the onset of depressive-like behavior. CONCLUSIONS These results implicate a primed and immune-reactive microglial population as a possible triggering mechanism for the development of depressive complications after TBI.


The Journal of Neuroscience | 2014

IL-4 Signaling Drives a Unique Arginase+/IL-1β+ Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4Rα after Traumatic Spinal Cord Injury

Ashley M. Fenn; Jodie C.E. Hall; John C. Gensel; Phillip G. Popovich; Jonathan P. Godbout

Alternative activation of microglia/macrophages (M2a) by interleukin (IL)-4 is purported to support intrinsic growth and repair processes after CNS injury. Nonetheless, alternative activation of microglia is poorly understood in vivo, particularly in the context of inflammation, injury, and aging. Here, we show that aged mice (18–19 months) had reduced functional recovery after spinal cord injury (SCI) associated with impaired induction of IL-4 receptor α (IL-4Rα) on microglia. The failure to successfully promote an IL-4/IL-4Rα response in aged mice resulted in attenuated arginase (M2a associated), IL-1β, and chemokine ligand 2 (CCL2) expression, and diminished recruitment of IL-4Rα+ macrophages to the injured spinal cord. Furthermore, the link between reduced IL-4Rα expression and reduced arginase, IL-1β, and CCL2 expression was confirmed using adult IL-4Rα knock-out (IL-4RαKO) mice. To better understand IL-4Rα-mediated regulation of active microglia, a series of studies was completed in mice that were peripherally injected with lipopolysaccharide and later provided IL-4 by intracerebroventricular infusion. These immune-based studies demonstrate that inflammatory-induced IL-4Rα upregulation on microglia was required for the induction of arginase by IL-4. In addition, IL-4-mediated reprogramming of active microglia enhanced neurite growth ex vivo and increased inflammatory gene expression (i.e., IL-1β and CCL2) and the corresponding recruitment of CCR2+/IL-4Rα+/arginase+ myeloid cells in vivo. IL-4 reprogrammed active microglia to a unique and previously unreported phenotype (arginase+/IL-1β+) that augmented neurite growth and enhanced recruitment of peripheral IL-4Rα+ myeloid cells to the CNS. Moreover, this key signaling cascade was impaired with age corresponding with reduced functional recovery after SCI.


Expert Opinion on Therapeutic Targets | 2011

Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages

John C. Gensel; Phillip G. Popovich

Introduction: Macrophage activation is a hallmark of spinal cord injury (SCI) pathology. CNS macrophages, derived from resident microglia and blood monocytes, are ubiquitous throughout the injured spinal cord, and respond to signals in the lesion environment by changing their phenotype and function. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. Areas covered: This review provides a comprehensive overview of current SCI clinical trials that are intended to promote neuroprotection, axon regeneration or cell replacement. None of these potential therapies were developed with the goal of influencing macrophage function; however, it is likely that each will have direct or indirect effects on CNS macrophages. The potential impact of each trial is discussed in the context of CNS macrophage biology. Expert opinion: Activation of CNS macrophages is an inevitable consequence of traumatic SCI. Given that these cells are exquisitely sensitive to changes in microenvironment, any intervention that affects tissue integrity and/or the composition of the cellular milieu will undoubtedly affect CNS macrophages. Thus, it is important to understand how current clinical trials will affect intrinsic CNS macrophages.


Nature Communications | 2015

Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury

Jessica L. Nielson; Jesse Paquette; Aiwen W. Liu; Cristian F. Guandique; C. Amy Tovar; Tomoo Inoue; Karen Amanda Irvine; John C. Gensel; Jennifer Kloke; Tanya Petrossian; Pek Y. Lum; Gunnar Carlsson; Geoffrey T. Manley; Wise Young; Michael S. Beattie; Jacqueline C. Bresnahan; Adam R. Ferguson

Data-driven discovery in complex neurological disorders has potential to extract meaningful syndromic knowledge from large, heterogeneous data sets to enhance potential for precision medicine. Here we describe the application of topological data analysis (TDA) for data-driven discovery in preclinical traumatic brain injury (TBI) and spinal cord injury (SCI) data sets mined from the Visualized Syndromic Information and Outcomes for Neurotrauma-SCI (VISION-SCI) repository. Through direct visualization of inter-related histopathological, functional and health outcomes, TDA detected novel patterns across the syndromic network, uncovering interactions between SCI and co-occurring TBI, as well as detrimental drug effects in unpublished multicentre preclinical drug trial data in SCI. TDA also revealed that perioperative hypertension predicted long-term recovery better than any tested drug after thoracic SCI in rats. TDA-based data-driven discovery has great potential application for decision-support for basic research and clinical problems such as outcome assessment, neurocritical care, treatment planning and rapid, precision-diagnosis.

Collaboration


Dive into the John C. Gensel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bei Zhang

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge