Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Joly is active.

Publication


Featured researches published by John C. Joly.


Journal of Biotechnology | 2011

Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases

Meixia Zhou; Yongping Crawford; Domingos Ng; Jack Tung; Abigail F.J. Pynn; Angela Meier; Inn H. Yuk; Natarajan Vijayasankaran; Kimberly Leach; John C. Joly; Bradley R. Snedecor; Amy Shen

Large-scale fed-batch cell culture processes of CHO cells are the standard platform for the clinical and commercial production of monoclonal antibodies. Lactate is one of the major by-products of CHO fed-batch culture. In pH-controlled bioreactors, accumulation of high levels of lactate is accompanied by high osmolality due to the addition of base to control pH of the cell culture medium, potentially leading to lower cell growth and lower therapeutic protein production during manufacturing. Lactate dehydrogenase (LDH) is an enzyme that catalyzes the conversion of the substrate, pyruvate, into lactate and many factors including pyruvate concentration modulate LDH activity. Alternately, pyruvate can be converted to acetyl-CoA by pyruvate dehydrogenases (PDHs), to be metabolized in the TCA cycle. PDH activity is inhibited when phosphorylated by pyruvate dehydrogenase kinases (PDHKs). In this study, we knocked down the gene expression of lactate dehydrogenase A (LDHa) and PDHKs to investigate the effect on lactate metabolism and protein production. We found that LDHa and PDHKs can be successfully downregulated simultaneously using a single targeting vector carrying small inhibitory RNAs (siRNA) for LDHa and PDHKs. Moreover, our fed-batch shake flask evaluation data using siRNA-mediated LDHa/PDHKs knockdown clones showed that downregulating LDHa and PDHKs in CHO cells expressing a therapeutic monoclonal antibody reduced lactate production, increased specific productivity and volumetric antibody production by approximately 90%, 75% and 68%, respectively, without appreciable impact on cell growth. Similar trends of lower lactate level and higher antibody productivity on average in siRNA clones were also observed from evaluations performed in bioreactors.


Molecular Microbiology | 2000

Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response

Tracy L. Raivio; Michael W. Laird; John C. Joly; Thomas J. Silhavy

The Cpx envelope stress response of Escherichia coli is controlled by a two‐component regulatory system that senses misfolded proteins in extracytoplasmic compartments and responds by inducing the expression of envelope protein folding and degrading factors. We have proposed that in the absence of envelope stress the pathway is maintained in a downregulated state, in part through interactions between the periplasmic inhibitor molecule CpxP and the sensing domain of the histidine kinase CpxA. In this study, we show that depletion of the periplasmic contents of the cell by spheroplast formation does indeed lead to induction of the Cpx envelope stress response. Further, removal of CpxP is an important component of this induction because tethering an MBP–CpxP fusion protein to the spheroplast inner membranes prevents full activation by this treatment. Spheroplast formation has previously been demonstrated to induce the expression of a periplasmic protein of unknown function, Spy. Analysis of spy expression in response to spheroplast formation by Western blot analysis and by lacZ operon fusion in various cpx mutant backgrounds demonstrated that spy is a member of the Cpx regulon. Interestingly, although the only known spy homologue is cpxP, Spy does not appear to perform the same function as CpxP as it is not involved in inhibiting the Cpx envelope stress response. Rather, deletion of spy leads to activation of the σE stress response. Because the σE response is specifically affected by alterations in outer membrane protein biogenesis, we think it possible that Spy may be involved in this process.


Biotechnology and Bioengineering | 2011

Controlling glycation of recombinant antibody in fed‐batch cell cultures

Inn H. Yuk; Boyan Zhang; Yi Yang; George Dutina; Kimberly Leach; Natarajan Vijayasankaran; Amy Shen; Dana C. Andersen; Bradley R. Snedecor; John C. Joly

Protein glycation is a non‐enzymatic glycosylation that can occur to proteins in the human body, and it is implicated in the pathogenesis of multiple chronic diseases. Glycation can also occur to recombinant antibodies during cell culture, which generates structural heterogeneity in the product. In a previous study, we discovered unusually high levels of glycation (>50%) in a recombinant monoclonal antibody (rhuMAb) produced by CHO cells. Prior to that discovery, we had not encountered such high levels of glycation in other in‐house therapeutic antibodies. Our goal here is to develop cell culture strategies to decrease rhuMAb glycation in a reliable, reproducible, and scalable manner. Because glycation is a post‐translational chemical reaction between a reducing sugar and a protein amine group, we hypothesized that lowering the concentration of glucose—the only source of reducing sugar in our fed‐batch cultures—would lower the extent of rhuMAb glycation. When we decreased the supply of glucose to bioreactors from bolus nutrient and glucose feeds, rhuMAb glycation decreased to below 20% at both 2‐L and 400‐L scales. When we maintained glucose concentrations at lower levels in bioreactors with continuous feeds, we could further decrease rhuMAb glycation levels to below 10%. These results show that we can control glycation of secreted proteins by controlling the glucose concentration in the cell culture. In addition, our data suggest that rhuMAb glycation occurring during the cell culture process may be approximated as a second‐order chemical reaction that is first order with respect to both glucose and non‐glycated rhuMAb. The basic principles of this glycation model should apply to other recombinant proteins secreted during cell culture. Biotechnol. Bioeng. 2011;108: 2600–2610.


Proteomics | 2001

Similarity of the Escherichia coli proteome upon completion of different biopharmaceutical fermentation processes

Kathleen M. Champion; Julie C. Nishihara; John C. Joly; David Arnott

A comprehensive view of the physiological state of Escherichia coli cells at the completion of fermentation processes for biopharmaceutical production was attained via two‐dimensional gel electrophoretic analysis of cellular proteins. For high cell density fermentations in which phosphate is depleted to induce recombinant protein expression from the alkaline phosphatase promoter, proteome analysis confirms that phosphate limitation occurs. Known phosphate starvation inducible proteins are observed at high levels; these include the periplasmic phosphate binding protein and the periplasmic phosphonate binding protein. The phn (EcoK) locus of these E. coli K‐12 strains remains cryptic, as demonstrated by failure to grow with phosphonate as the sole phosphorus source. Proteome analysis also provided evidence that cells utilize alternative carbon and energy sources during these fermentation processes. To address regulatory issues in the biopharmaceutical industry, comparative electrophoretic analyses were conducted on a qualitative basis for four different fermentation processes. Using this approach, the protein profiles for these processes were found to be highly similar, with the vast majority (85–90%) of proteins detected in all profiles. The observed similarity in proteomes suggests that multiproduct host cell protein immunoassays are a feasible means of quantifying host‐derived polypeptides from a variety of biopharmaceutical fermentation processes.


Applied and Environmental Microbiology | 2005

Proteomic Profiling of Recombinant Escherichia coli in High-Cell-Density Fermentations for Improved Production of an Antibody Fragment Biopharmaceutical

Ilana S. Aldor; Denise C. Krawitz; William F. Forrest; Christina Y. Chen; Julie C. Nishihara; John C. Joly; Kathleen M. Champion

ABSTRACT By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield.


Biotechnology and Bioengineering | 2010

Mechanisms of unintended amino acid sequence changes in recombinant monoclonal antibodies expressed in Chinese Hamster Ovary (CHO) cells.

Donglin Guo; Albert Gao; David A. Michels; Lauren Feeney; Marian Eng; Betty Chan; Michael W. Laird; Boyan Zhang; X. Christopher Yu; John C. Joly; Brad Snedecor; Amy Shen

An amino acid sequence variant is defined as an unintended amino acid sequence change and contributes to product heterogeneity. Recombinant monoclonal antibodies (MAbs) are primarily expressed from Chinese Hamster Ovary (CHO) cells using stably transfected production cell lines. Selections and amplifications with reagents such as methotrexate (MTX) are often required to achieve high producing stable cell lines. Since MTX is often used to generate high producing cell lines, we investigated the genomic mutation rates of the hypoxanthine–guanine phosphoribosyltransferase (HGPRT or HPRT) gene using a 6‐thioguanine (6‐TG) assay under various concentrations of MTX selection in CHO cells. Our results show that the 6‐TG resistance increased as the MTX concentration increased during stable cell line development. We also investigated low levels of sequence variants observed in two stable cell lines expressing different MAbs. Our data show that the replacement of serine at position 167 by arginine (S167R) in the light chain of antibody A (MAb‐A) was due to a genomic nucleotide sequence change whereas the replacement of serine at position 63 by asparagine (S63N) in the heavy chain of antibody B (MAb‐B) was likely due to translational misincorporation. This mistranslation is codon specific since S63N mistranslation is not detectable when the S63 AGC codon is changed to a TCC or TCT codon. Our results demonstrate that both a genomic nucleotide change and translational misincorporation can lead to low levels of sequence variants and mistranslation of serine to asparagine can be eliminated by substituting the TCC or TCT codon for the S63 AGC codon without impacting antibody productivity. Biotechnol. Bioeng. 2010;107: 163–171.


Biotechnology Progress | 2013

Chinese hamster ovary K1 host cell enables stable cell line development for antibody molecules which are difficult to express in DUXB11‐derived dihydrofolate reductase deficient host cell

Zhilan Hu; Donglin Guo; Shirley Yip; Dejin Zhan; Shahram Misaghi; John C. Joly; Bradley R. Snedecor; Amy Shen

Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR‐deficient DG44, and DUXB11‐based DHFR deficient CHO. Current Genentech commercial full‐length antibody products have all been produced in the DUXB11‐derived DHFR‐deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11‐derived DHFR‐deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11‐based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14‐day fed batch cultures in shake flasks. In contrast, the DUXB11‐based host produced ∼0.1 g/l for both antibodies in the same 14‐day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ∼2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass.


Biotechnology Progress | 2015

Effects of copper on CHO cells: cellular requirements and product quality considerations.

Inn H. Yuk; Stephen Russell; Yun Tang; Wei-Ting Hsu; Jacob B. Mauger; Rigzen P. S. Aulakh; Jun Luo; Martin Gawlitzek; John C. Joly

Recent reports highlight the impact of copper on lactate metabolism: CHO cell cultures with higher initial copper levels shift to net lactate consumption and yield lower final lactate and higher titers. These studies investigated the effects of copper on metabolite and transcript profiles, but did not measure in detail the dependences of cell culture performance and product quality on copper concentrations. To more thoroughly map these dependences, we explored the effects of various copper treatments on four recombinant CHO cell lines. In the first cell line, when extracellular copper remained above the limit of detection (LOD), cultures shifted to net lactate consumption and yielded comparable performances irrespective of the differences in copper levels; when extracellular copper dropped below LOD (∼13 nM), cultures failed to shift to net lactate consumption, and yielded significantly lower product titers. Across the four cell lines, the ability to grow and consume lactate seemed to depend on the presence of a minimum level of copper, beyond which there were no further gains in culture performance. Although this minimum cellular copper requirement could not be directly quantified, we estimated its probable range for the first cell line by applying several assumptions. Even when different copper concentrations did not affect cell culture performance, they affected product quality profiles: higher initial copper concentrations increased the basic variants in the recombinant IgG1 products. Therefore, in optimizing chemically defined media, it is important to select a copper concentration that is adequate and achieves desired product quality attributes.


Biotechnology Progress | 2013

Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined φC31 integrase and CRE-Lox technologies

Yongping Crawford; Michelle Zhou; Zhilan Hu; John C. Joly; Brad Snedecor; Amy Shen; Albert E. Gao

The use of targeted integration (TI) in cell line development (CLD) usually introduces one copy of a recombinant gene into a predetermined transcriptionally active locus. This reduces the heterogeneity typically associated with traditional random integration (RI) CLD with regards to varied productivity and instability, resulting from diverse chromosomal influences, varied copy numbers, and repeat‐induced rearrangement. As such, TI CLD offers the hope of a predictable and consistent CLD process for establishing stable clones. However, given the low copy number, cell lines established from a TI CLD process tend to exhibit low productivity. Here, we describe our nonviral‐based approach for quickly establishing and identifying TI hosts from a limited genome screening. Importantly, the TI hosts identified are consistent and reliable in supporting the production of diverse antibodies regardless of antibody subclass (IgG1 vs. IgG4) or prior traditional CLD performance (relatively easy vs. difficult to express antibodies). Moreover, an approximately twofold increase in titer can be achieved by using a CRE recombinase‐mediated cassette exchange (RMCE) strategy with an exchange vector carrying two units of the antibody gene. Two RMCE hosts that were established were able to produce up to ∼1.7 and 2 g/L of antibodies in nonoptimized fed‐batch shake flask production cultures with chemically defined media. Potentially, this strategy may be applied to the production of bispecific antibodies with a fast turnaround time.


Biotechnology and Bioengineering | 2016

Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells

Zhilan Hu; Henry Zhang; Benjamin Haley; Frank Macchi; Feng Yang; Shahram Misaghi; Joseph Elich; Renee Yang; Yun Tang; John C. Joly; Bradley R. Snedecor; Amy Shen

Heterogeneity of C‐terminal lysine levels often observed in therapeutic monoclonal antibodies is believed to result from the proteolysis by endogenous carboxypeptidase(s) during cell culture production. Identifying the responsible carboxypeptidase(s) for C‐terminal lysine cleavage in CHO cells would provide valuable insights for antibody production cell culture processes development and optimization. In this study, five carboxypeptidases, CpD, CpM, CpN, CpB, and CpE, were studied for message RNA (mRNA) expression by qRT‐PCR analysis in two most commonly used blank hosts (DUXB‐11 derived DHFR‐deficient DP12 host and DHFR‐positive CHOK1 host), used for therapeutic antibody production, as well an antibody‐expressing cell line derived from each host. Our results showed that CpD had the highest mRNA expression. When CpD mRNA levels were reduced by RNAi (RNA interference) technology, C‐terminal lysine levels increased, whereas there was no obvious change in C‐terminal lysine levels when a different carboxypeptidase mRNA level was knocked down suggesting that carboxypeptidase D is the main contributor for C‐terminal lysine processing. Most importantly, when CpD expression was knocked out by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, C‐terminal lysine cleavage was completely abolished in CpD knockout cells based on mass spectrometry analysis, demonstrating that CpD is the only endogenous carboxypeptidase that cleaves antibody heavy chain C‐terminal lysine in CHO cells. Hence, our work showed for the first time that the cleavage of antibody heavy chain C‐terminal lysine is solely mediated by the carboxypeptidase D in CHO cells and our finding provides one solution to eliminating C‐terminal lysine heterogeneity for therapeutic antibody production by knocking out CpD gene expression. Biotechnol. Bioeng. 2016;113: 2100–2106.

Collaboration


Dive into the John C. Joly's collaboration.

Researchain Logo
Decentralizing Knowledge