Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Little is active.

Publication


Featured researches published by John C. Little.


Atmospheric Environment | 2001

Measuring partition and diffusion coefficients for volatile organic compounds in vinyl flooring

Steven S. Cox; Dongye Zhao; John C. Little

Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. The sorption/desorption behavior of VF was investigated using single-component and binary systems of seven common VOCs ranging in molecular weight from n-butanol to n-pentadecane. The simultaneous sorption of VOCs and water vapor by VF was also investigated. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. For the four alkane VOCs studied, K correlates well with vapor pressure and D correlates well with molecular weight, providing a means to estimate these parameters for other alkane VOCs. While the simultaneous sorption of a binary mixture of VOCs is non-competitive, the presence of water vapor increases the uptake of VOCs by VF. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.


Atmospheric Environment | 2011

Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

Yinping Zhang; Jinhan Mo; Yuguo Li; Jan Sundell; Pawel Wargocki; J. S. Zhang; John C. Little; Richard L. Corsi; Qi-Hong Deng; Michael H.K. Leung; Lei Fang; Wenhao Chen; Jinguang Li; Yuexia Sun

Abstract Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two authors, who further reduced the number of articles to 160 based on the full texts. These articles were reviewed by the panel using predefined inclusion criteria during their first meeting. Additions were also made by the panel. Of these, 133 articles were finally selected for detailed review. Each article was assessed independently by two members of the panel and then judged by the entire panel during a consensus meeting. During this process 59 articles were deemed conclusive and their results were used for final reporting at their second meeting. The conclusions are that: (1) None of the reviewed technologies was able to effectively remove all indoor pollutants and many were found to generate undesirable by-products during operation. (2) Particle filtration and sorption of gaseous pollutants were among the most effective air cleaning technologies, but there is insufficient information regarding long-term performance and proper maintenance. (3) The existing data make it difficult to extract information such as Clean Air Delivery Rate (CADR), which represents a common benchmark for comparing the performance of different air cleaning technologies. (4) To compare and select suitable indoor air cleaning devices, a labeling system accounting for characteristics such as CADR, energy consumption, volume, harmful by-products, and life span is necessary. For that purpose, a standard test room and condition should be built and studied. (5) Although there is evidence that some air cleaning technologies improve indoor air quality, further research is needed before any of them can be confidently recommended for use in indoor environments.


Environmental Science & Technology | 2012

Influence of temperature on the emission of di-(2-ethylhexyl)phthalate (DEHP) from PVC flooring in the emission cell FLEC.

Per Axel Clausen; Zhe Liu; Vivi Kofoed-Sørensen; John C. Little; Peder Wolkoff

Emissions of di-(2-ethylhexyl) phthalate (DEHP) from one type of polyvinylchloride (PVC) flooring with approximately 13% (w/w) DEHP as plasticizer were measured in the Field and Laboratory Emission Cell (FLEC). The gas-phase concentrations of DEHP versus time were measured at air flow rate of 450 mL·min(-1) and five different temperatures: 23 °C, 35 °C, 47 °C, 55 °C, and 61 °C. The experiments were terminated two weeks to three months after steady-state was reached and the interior surface of the FLECs was rinsed with methanol to determine the surface concentration of DEHP. The most important findings are (1) DEHP steady-state concentrations increased greatly with increasing temperature (0.9 ± 0.1 μg·m(-3), 10 ± 1 μg·m(-3), 38 ± 1 μg·m(-3), 91 ± 4 μg·m(-3), and 198 ± 5 μg·m(-3), respectively), (2) adsorption to the chamber walls decreased greatly with increasing temperature (measured partition coefficient between FLEC air and interior surface are: 640 ± 146 m, 97 ± 20 m, 21 ± 5 m, 11 ± 2 m, and 2 ± 1 m, respectively), (3) gas-phase DEHP concentration in equilibrium with the vinyl flooring surface is close to the vapor pressure of pure DEHP, and (4) with an increase of temperature in a home from 23 to 35 °C, the amount of DEHP in the gas- and particle-phase combined is predicted to increase almost 10-fold. The amount in the gas-phase increases by a factor of 24 with a corresponding decrease in the amount on the airborne particles.


Environmental Science & Technology | 2012

Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment.

John C. Little; Charles J. Weschler; William W. Nazaroff; Zhe Liu; Elaine A. Cohen Hubal

A systematic and efficient strategy is needed to assess and manage potential risks to human health that arise from the manufacture and use of thousands of chemicals. Among available tools for rapid assessment of large numbers of chemicals, significant gaps are associated with the capability to evaluate exposures that occur indoors. For semivolatile organic compounds (SVOCs), exposure is strongly influenced by the types of products in which these SVOCs occur. We propose methods for obtaining screening-level estimates for two primary SVOC source classes: additives in products used indoors and ingredients in products sprayed or applied to interior surfaces. Accounting for product use, emission characteristics, and the properties of the SVOCs, we estimate exposure via inhalation of SVOCs in the gas-phase, inhalation of SVOCs sorbed to airborne particles, ingestion of SVOCs sorbed to dust, and dermal sorption of SVOCs from the air into the blood. We also evaluate how exposure to the general public will change if chemical substitutions are made. Further development of a comprehensive set of models including the other SVOC-containing products and the other SVOC exposure pathways, together with appropriate methods for estimating or measuring the key parameters (in particular, the gas-phase concentration in equilibrium with the material-phase concentration of the SVOC in the product, or y(0)), is needed. When combined with rapid toxicity estimates, screening-level exposure estimates can contribute to health-risk-based prioritization of a wide range of chemicals of concern.


Water Research | 2002

Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model

Daniel F McGinnis; John C. Little

A discrete-bubble model that predicts the rate of oxygen transfer in diffused-bubble systems is evaluated. Key inputs are the applied gas flow rate and the initial bubble size distribution. The model accounts for changes in the volume of individual bubbles due to transfer of oxygen and nitrogen (and hence changing partial pressure), variation in hydrostatic pressure, and changes in temperature. The bubble-rise velocity and mass-transfer coefficient, both known functions of the bubble diameter, are continually adjusted. The model is applied to predict the results of diffused-bubble oxygen transfer tests conducted in a 14-m deep tank at three air flow rates. All of the test data are predicted to within 15%. The range of bubble diameters (0.2-2 mm) spans the region of greatest variation in rise velocity and mass-transfer coefficient. For simplicity, the Sauter-mean diameter is used rather than the full bubble size distribution without loss of accuracy. The model should prove useful in the design and optimization of hypolimnetic oxygenation systems, as well as other diffused-bubble applications.


Water Resources Research | 2004

Interaction between a bubble plume and the near field in a stratified lake

Daniel F McGinnis; Andreas Lorke; Alfred Wüest; A. Stöckli; John C. Little

A steady state bubble-plume model is evaluated using full-scale temperature, salinity, and dissolved oxygen data collected in a Swiss lake. The data revealed a plume-generated near-field environment that differed significantly from the ambient far-field water column properties. A near-field torus of reduced stratification developed around the plume, the extent of which is on the same lateral scale as the horizontal dislocations generated by persistent first-mode seiching. The plume fallback water was found to penetrate much deeper than expected, thereby maintaining reduced vertical gradients in the near-field torus. The plume entrains a portion of the fallback water leading to short-circuiting, which generates a complex plume-lake interaction and reduces far-field downwelling relative to the upward plume flow. As the integral plume model incorporates the entrainment hypothesis, it is highly sensitive to the near-field environmental conditions. After identifying appropriate near-field boundary conditions the plume model predictions agree well with the field observations.


Environmental Health Perspectives | 2009

Predicting Residential Exposure to Phthalate Plasticizer Emitted from Vinyl Flooring: Sensitivity, Uncertainty, and Implications for Biomonitoring

Ying Xu; Elaine A. Cohen Hubal; John C. Little

Background Because of the ubiquitous nature of phthalates in the environment and the potential for adverse human health effects, an urgent need exists to identify the most important sources and pathways of exposure. Objectives Using emissions of di(2-ethylhexyl) phthalate (DEHP) from vinyl flooring (VF) as an illustrative example, we describe a fundamental approach that can be used to identify the important sources and pathways of exposure associated with phthalates in indoor material. Methods We used a three-compartment model to estimate the emission rate of DEHP from VF and the evolving exposures via inhalation, dermal absorption, and oral ingestion of dust in a realistic indoor setting. Results A sensitivity analysis indicates that the VF source characteristics (surface area and material-phase concentration of DEHP), as well as the external mass-transfer coefficient and ventilation rate, are important variables that influence the steady-state DEHP concentration and the resulting exposure. In addition, DEHP is sorbed by interior surfaces, and the associated surface area and surface/air partition coefficients strongly influence the time to steady state. The roughly 40-fold range in predicted exposure reveals the inherent difficulty in using biomonitoring to identify specific sources of exposure to phthalates in the general population. Conclusions The relatively simple dependence on source and chemical-specific transport parameters suggests that the mechanistic modeling approach could be extended to predict exposures arising from other sources of phthalates as well as additional sources of other semivolatile organic compounds (SVOCs) such as biocides and flame retardants. This modeling approach could also provide a relatively inexpensive way to quantify exposure to many of the SVOCs used in indoor materials and consumer products.


Environmental Science & Technology | 2012

Measuring and predicting the emission rate of phthalate plasticizer from vinyl flooring in a specially-designed chamber

Ying Xu; Zhe Liu; Jinsoo Park; Per Axel Clausen; Jennifer L. Benning; John C. Little

The emission of di-2-ethylhexyl phthalate (DEHP) from vinyl flooring (VF) was measured in specially designed stainless steel chambers. In duplicate chamber studies, the gas-phase concentration in the chamber increased slowly and reached a steady state level of 0.8-0.9 μg/m(3) after about 20 days. By increasing the area of vinyl flooring and decreasing that of the stainless steel surface within the chamber, the time to reach steady state was significantly reduced, compared to a previous study (1 month versus 5 months). The adsorption isotherm of DEHP on the stainless steel chamber surfaces was explicitly measured using solvent extraction and thermal desorption. The strong partitioning of DEHP onto the stainless steel surface was found to follow a simple linear relationship. Thermal desorption resulted in higher recovery than solvent extraction. Investigation of sorption kinetics showed that it takes several weeks for the sorption of DEHP onto the stainless steel surface to reach equilibrium. The content of DEHP in VF was measured at about 15% (w/w) using pressurized liquid extraction. The independently measured or calculated parameters were used to validate an SVOC emission model, with excellent agreement between model prediction and the observed gas-phase DEHP chamber concentrations.


Water Research | 2009

Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation.

Paul A. Gantzer; Lee D. Bryant; John C. Little

Soluble metals such as iron (Fe) and manganese (Mn) often reach problematic levels in water-supply reservoirs during summer stratification following the onset of hypolimnetic hypoxia. The behavior of soluble and particulate Fe and Mn was studied following the installation of a hypolimnetic oxygenation system in Carvins Cove Reservoir, a water-supply impoundment managed by the Western Virginia Water Authority. During oxygenation, manganese concentrations were very low in the bulk hypolimnion (<0.05 mg l(-1)), but high concentrations (>2.0 mg l(-1)) were still observed in the benthic region close to the sediment, despite near-sediment dissolved oxygen concentrations in excess of 5.0 mg l(-1). Oxygenation appears to affect the location of the oxic/anoxic boundary sufficiently to restrict substantial transport of soluble Mn to the bulk water of the hypolimnion. However, the position of the oxic/anoxic boundary was not uniformly affected along the reservoir bottom, allowing horizontal transport of soluble Mn from higher elevations in contact with hypoxic sediments. During one summer, when the oxygen system was turned off for a month, the soluble Mn in the bulk hypolimnion increased substantially. Oxygen concentrations were quickly restored after the system was turned back on, but elevated levels of soluble Mn persisted until the sedimentation rate of detritus through the hypolimnion increased. When operated without interruption, the oxygenation system was able to reduce the bulk average hypolimnion soluble Mn concentration by up to 97%, indicating that source water control of soluble Mn and Fe can be accomplished with hypolimnetic oxygenation in water-supply reservoirs.


Journal of The Air & Waste Management Association | 2001

Measuring Concentrations of Volatile Organic Compounds in Vinyl Flooring

Steven S. Cox; John C. Little; Alfred T. Hodgson

ABSTRACT The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce ~200 0.78-cm2 disks. The disks were milled to a powder at -140 °C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatog-raphy/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 |ig/g VF for n-hexadecane to 130 |Jg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix.

Collaboration


Dive into the John C. Little's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Xu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfred T. Hodgson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer L. Benning

South Dakota School of Mines and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge