Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. McKew is active.

Publication


Featured researches published by John C. McKew.


Drug Discovery Today | 2013

Phenotypic screens as a renewed approach for drug discovery

Wei Zheng; Natasha Thorne; John C. McKew

The significant reduction in the number of newly approved drugs in the past decade has been partially attributed to failures in discovery and validation of new targets. Evaluation of recently approved new drugs has revealed that the number of approved drugs discovered through phenotypic screens, an original drug screening paradigm, has exceeded those discovered through the molecular target-based approach. Phenotypic screening is thus gaining new momentum in drug discovery with the hope that this approach may revitalize drug discovery and improve the success rate of drug approval through the discovery of viable lead compounds and identification of novel drug targets.


BMC Neuroscience | 2012

Inhibitors of cytosolic phospholipase A2

John C. McKew; Katherine L. Lee; Lihren Chen; Richard Vargas; James D. Clark; Cara Williams; Valerie Clerin; Suzana Marusic; Kevin Pong

BackgroundActivation of phospholipase A2 (PLA2) and the subsequent metabolism of arachidonic acid (AA) to prostaglandins have been shown to play an important role in neuronal death in neurodegenerative disease. Here we report the effects of the prion peptide fragment HuPrP106-126 on the PLA2 cascade in primary cortical neurons and translocation of cPLA2 to neurites.ResultsExposure of primary cortical neurons to HuPrP106-126 increased the levels of phosphorylated cPLA2 and caused phosphorylated cPLA2 to relocate from the cell body to the cellular neurite in a PrP-dependent manner, a previously unreported observation. HuPrP106-126 also induced significant AA release, an indicator of cPLA2 activation; this preceded synapse damage and subsequent cellular death. The novel translocation of p-cPLA2 postulated the potential for exposure to HuPrP106-126 to result in a re-arrangement of the cellular cytoskeleton. However p-cPLA2 did not colocalise significantly with F-actin, intermediate filaments, or microtubule-associated proteins. Conversely, p-cPLA2 did significantly colocalise with the cytoskeletal protein beta III tubulin. Pre-treatment with the PLA2 inhibitor, palmitoyl trifluoromethyl ketone (PACOCF3) reduced cPLA2 activation, AA release and damage to the neuronal synapse. Furthermore, PACOCF3 reduced expression of p-cPLA2 in neurites and inhibited colocalisation with beta III tubulin, resulting in protection against PrP-induced cell death.ConclusionsCollectively, these findings suggest that cPLA2 plays a vital role in the action of HuPrP106-126 and that the colocalisation of p-cPLA2 with beta III tubulin could be central to the progress of neurodegeneration caused by prion peptides. Further work is needed to define exactly how PLA2 inhibitors protect neurons from peptide-induced toxicity and how this relates to intracellular structural changes occurring in neurodegeneration.


Emerging microbes & infections | 2014

Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs.

Jennifer Kouznetsova; Wei Sun; Carles Martínez-Romero; Gregory Tawa; Paul Shinn; Catherine Z. Chen; Aaron D. Schimmer; Philip E. Sanderson; John C. McKew; Wei Zheng; Adolfo García-Sastre

In light of the current outbreak of Ebola virus disease, there is an urgent need to develop effective therapeutics to treat Ebola infection, and drug repurposing screening is a potentially rapid approach for identifying such therapeutics. We developed a biosafety level 2 (BSL-2) 1536-well plate assay to screen for entry inhibitors of Ebola virus-like particles (VLPs) containing the glycoprotein (GP) and the matrix VP40 protein fused to a beta-lactamase reporter protein and applied this assay for a rapid drug repurposing screen of Food and Drug Administration (FDA)-approved drugs. We report here the identification of 53 drugs with activity of blocking Ebola VLP entry into cells. These 53 active compounds can be divided into categories including microtubule inhibitors, estrogen receptor modulators, antihistamines, antipsychotics, pump/channel antagonists, and anticancer/antibiotics. Several of these compounds, including microtubule inhibitors and estrogen receptor modulators, had previously been reported to be active in BSL-4 infectious Ebola virus replication assays and in animal model studies. Our assay represents a robust, effective and rapid high-throughput screen for the identification of lead compounds in drug development for the treatment of Ebola virus infection.


Journal of Biological Chemistry | 2012

δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders

Miao Xu; Ke Liu; Manju Swaroop; Forbes D. Porter; Rohini Sidhu; Sally Firnkes; Daniel S. Ory; Juan J. Marugan; Jingbo Xiao; Noel Southall; William J. Pavan; Cristin Davidson; Steven U. Walkley; Alan T. Remaley; Ulrich Baxa; Wei Sun; John C. McKew; Christopher P. Austin; Wei Zheng

Background: Niemann-Pick disease type C and Wolman diseases are caused by mutations in genes responsible for intracellular cholesterol processing and trafficking. Results: δ-Tocopherol reduces lysosomal accumulation of cholesterol and other lipids potentially through enhancement of lysosomal exocytosis. Conclusion: δ-Tocopherol is a novel lead compound for drug development to treat lysosomal storage diseases. Significance: Lysosomal exocytosis may represent a new drug target broadly applicable to lysosomal storage diseases. Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases.


Journal of Medicinal Chemistry | 2008

Indole Cytosolic Phospholipase A2 α Inhibitors: Discovery and in Vitro and in Vivo Characterization of 4-{3-[5-Chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1H-indol-3-yl]propyl}benzoic Acid, Efipladib

John C. McKew; Katherine L. Lee; Marina W.H. Shen; Paresh Thakker; Megan A. Foley; Mark L. Behnke; Baihua Hu; Fuk-Wah Sum; Steve Tam; Yonghan Hu; Lihren Chen; Steven J. Kirincich; Ronald S. Michalak; Jennifer R. Thomason; Manus Ipek; Kun Wu; Lane Wooder; Manjunath K. Ramarao; Elizabeth Murphy; Debra G. Goodwin; Leo M. Albert; Xin Xu; Frances Donahue; M. Sherry Ku; James C. Keith; Cheryl Nickerson-Nutter; William M. Abraham; Cara Williams; Martin Hegen; James D. Clark

The optimization of a class of indole cPLA 2 alpha inhibitors is described herein. The importance of the substituent at C3 and the substitution pattern of the phenylmethane sulfonamide region are highlighted. Optimization of these regions led to the discovery of 111 (efipladib) and 121 (WAY-196025), which are shown to be potent, selective inhibitors of cPLA 2 alpha in a variety of isolated enzyme assays, cell based assays, and rat and human whole blood assays. The binding of these compounds has been further examined using isothermal titration calorimetry. Finally, these compounds have shown efficacy when dosed orally in multiple acute and chronic prostaglandin and leukotriene dependent in vivo models.


Current Topics in Medicinal Chemistry | 2014

Collaborative Development of 2-Hydroxypropyl-β-Cyclodextrin for the Treatment of Niemann-Pick Type C1 Disease

Elizabeth A. Ottinger; Mark L. Kao; Nuria Carrillo-Carrasco; Nicole M. Yanjanin; Roopa Kanakatti Shankar; Marjo Janssen; Marcus E. Brewster; Ilona Scott; Xin Xu; Jim Cradock; Pramod Terse; Seameen Dehdashti; Juan J. Marugan; Wei Zheng; Lili Portilla; Alan Hubbs; William J. Pavan; John D. Heiss; Charles H. Vite; Steven U. Walkley; Daniel S. Ory; Steven A. Silber; Forbes D. Porter; Christopher P. Austin; John C. McKew

In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Sciences (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community.


Scientific Reports | 2015

Chemical signatures and new drug targets for gametocytocidal drug development

Wei Sun; Takeshi Tanaka; Crystal T. Magle; Wenwei Huang; Noel Southall; Ruili Huang; Seameen Dehdashti; John C. McKew; Kim C. Williamson; Wei Zheng

Control of parasite transmission is critical for the eradication of malaria. However, most antimalarial drugs are not active against P. falciparum gametocytes, responsible for the spread of malaria. Consequently, patients can remain infectious for weeks after the clearance of asexual parasites and clinical symptoms. Here we report the identification of 27 potent gametocytocidal compounds (IC50 < 1 μM) from screening 5,215 known drugs and compounds. All these compounds were active against three strains of gametocytes with different drug sensitivities and geographical origins, 3D7, HB3 and Dd2. Cheminformatic analysis revealed chemical signatures for P. falciparum sexual and asexual stages indicative of druggability and suggesting potential targets. Torin 2, a top lead compound (IC50 = 8 nM against gametocytes in vitro), completely blocked oocyst formation in a mouse model of transmission. These results provide critical new leads and potential targets to expand the repertoire of malaria transmission-blocking reagents.


Journal of Neuroimmunology | 2008

Blockade of cytosolic phospholipase A2α prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses

Suzana Marusic; Paresh Thakker; Jeffrey W. Pelker; Nancy Stedman; Katherine L. Lee; John C. McKew; Lixin Han; Xin Xu; Stan F. Wolf; Adam J. Borey; Junqing Cui; Marina W.H. Shen; Fran Donahue; Mina Hassan-Zahraee; Michael W. Leach; Takao Shimizu; James D. Clark

Cytosolic phospholipase A2 alpha (cPLA2 alpha) is the rate-limiting enzyme for release of arachidonic acid, which is converted primarily to prostaglandins via the cyclooxygenase (COX) 1/2 pathways, and leukotrienes via the 5-lipoxygenase (LO) pathway. We utilized inhibitors of cPLA2 alpha, COX-1/2 and 5-LO to determine the potential roles of these enzymes in development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Blocking cPLA2 alpha prevented EAE development and greatly reduced antigen-induced production of Th1-type cytokines and IL-17. Blocking COX-1/2 delayed onset and reduced severity of EAE, and reduced production of Th1-type cytokines, but not IL-17. Blocking 5-LO delayed onset and reduced cumulative severity of EAE, but did not reduce production of Th1-type cytokines or IL-17. Finally, blockade of cPLA2 alpha from the onset of clinical EAE reduced duration of EAE relapses. Therefore, cPLA2 alpha represents a potential therapeutic target for treatment of MS.


The Lancet | 2017

Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial

Daniel S. Ory; Elizabeth A. Ottinger; Nicole Y. Farhat; Kelly A. King; Xuntian Jiang; Lisa Weissfeld; Elizabeth Berry-Kravis; Cristin Davidson; Simona Bianconi; Lee Ann Keener; Ravichandran Rao; Ariane Soldatos; Rohini Sidhu; Kimberly A Walters; Xin Xu; Audrey Thurm; Beth Solomon; William J. Pavan; Bernardus N Machielse; Mark Kao; Steven A. Silber; John C. McKew; Carmen C. Brewer; Charles H. Vite; Steven U. Walkley; Christopher P. Austin; Forbes D. Porter

BACKGROUND Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-β-cyclodextrins (HPβCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPβCD. METHODS In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPβCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPβCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPβCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPβCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPβCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPβCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION Patients with NPC1 treated with intrathecal HPβCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPβCD. FUNDING National Institutes of Health, Danas Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samanthas Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.


Human Mutation | 2014

Mutation update for GNE gene variants associated with GNE myopathy.

Frank Celeste; Thierry Vilboux; Carla Ciccone; John Karl de Dios; May Christine V. Malicdan; Petcharat Leoyklang; John C. McKew; William A. Gahl; Nuria Carrillo-Carrasco; Marjan Huizing

The GNE gene encodes the rate‐limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult‐onset progressive myopathy. GNE myopathy‐associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world‐wide prevalence of GNE myopathy to be ∼4–21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorders pathomechanism and for the success of ongoing treatment trials.

Collaboration


Dive into the John C. McKew's collaboration.

Top Co-Authors

Avatar

Wei Zheng

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Xu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge