Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Meeks is active.

Publication


Featured researches published by John C. Meeks.


Microbiology and Molecular Biology Reviews | 2002

Regulation of Cellular Differentiation in Filamentous Cyanobacteria in Free-Living and Plant-Associated Symbiotic Growth States

John C. Meeks; Jeff Elhai

SUMMARY Certain filamentous nitrogen-fixing cyanobacteria generate signals that direct their own multicellular development. They also respond to signals from plants that initiate or modulate differentiation, leading to the establishment of a symbiotic association. An objective of this review is to describe the mechanisms by which free-living cyanobacteria regulate their development and then to consider how plants may exploit cyanobacterial physiology to achieve stable symbioses. Cyanobacteria that are capable of forming plant symbioses can differentiate into motile filaments called hormogonia and into specialized nitrogen-fixing cells called heterocysts. Plant signals exert both positive and negative regulatory control on hormogonium differentiation. Heterocyst differentiation is a highly regulated process, resulting in a regularly spaced pattern of heterocysts in the filament. The evidence is most consistent with the pattern arising in two stages. First, nitrogen limitation triggers a nonrandomly spaced cluster of cells (perhaps at a critical stage of their cell cycle) to initiate differentiation. Interactions between an inhibitory peptide exported by the differentiating cells and an activator protein within them causes one cell within each cluster to fully differentiate, yielding a single mature heterocyst. In symbiosis with plants, heterocyst frequencies are increased 3- to 10-fold because, we propose, either differentation is initiated at an increased number of sites or resolution of differentiating clusters is incomplete. The physiology of symbiotically associated cyanobacteria raises the prospect that heterocyst differentiation proceeds independently of the nitrogen status of a cell and depends instead on signals produced by the plant partner.


Photosynthesis Research | 2001

An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium.

John C. Meeks; Jeff Elhai; Teresa Thiel; Malcolm Potts; Frank W. Larimer; Jane E. Lamerdin; Paul Predki; Ronald M. Atlas

Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple developmental alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.


Archives of Microbiology | 2002

Cellular differentiation in the cyanobacterium Nostoc punctiforme.

John C. Meeks; Elsie L. Campbell; Michael L. Summers; Francis C. Y. Wong

Abstract.Nostoc punctiforme is a phenotypically complex, filamentous, nitrogen-fixing cyanobacterium, whose vegetative cells can mature in four developmental directions. The particular developmental direction is determined by environmental signals. The vegetative cell cycle is maintained when nutrients are sufficient. Limitation for combined nitrogen induces the terminal differentiation of heterocysts, cells specialized for nitrogen fixation in an oxic environment. A number of unique regulatory events and genes have been identified and integrated into a working model of heterocyst differentiation. Phosphate limitation induces the transient differentiation of akinetes, spore-like cells resistant to cold and desiccation. A variety of environmental changes, both positive and negative for growth, induce the transient differentiation of hormogonia, motile filaments that function in dispersal. Initiation of the differentiation of heterocysts, akinetes and hormogonia are hypothesized to depart from the vegetative cell cycle, following separate and distinct events. N. punctiforme also forms nitrogen-fixing symbiotic associations; its plant partners influence the differentiation and behavior of hormogonia and heterocysts. N. punctiforme is genetically tractable and its genome sequence is nearly complete. Thus, the regulatory circuits of three cellular differentiation events and symbiotic interactions of N. punctiforme can be experimentally analyzed by functional genomics.


Planta | 1983

Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association

Carol S. Enderlin; John C. Meeks

The partners of the symbiotic association between Anthoceros punctatus L. and Nostoc spp. have been cultured separately in a pure state. The symbiotic association was reconstituted following dual culture in liquid Anthoceros growth medium with a variety of axenic Nostoc isolates and mutant strains. The heterocyst frequency of competent Nostoc strains increased four- to fivefold when in symbiotic association relative to free-living N2-grown cultures. Dinitrogen fixation by symbiotic Nostoc supported the growth of Anthoceros tissue, although this growth was nitrogen-limited relative to that supported by exogenous ammonium. When the association was reconstituted in the presence of two or three wild-type and mutant Nostoc strains some of these strains were found to compete in infection of Anthoceros tissue and a fraction of the symbiotic Nostoc colonies contained more than one strain. Exogenous ammonium did not affect infection, but repressed development of the symbiotic Nostoc colonies in Anthoceros tissue, and symbiotic Nostoc in N2-grown Anthoceros tissue appeared to regress from the symbiotic state in the presence of exogenous ammonium. The results show that the Anthoceros-Nostoc symbiotic association is amenable to specific experimental manipulations; their implications are discussed with respect to infection of Anthoceros tissue and control of the development of symbiotic Nostoc.


Journal of Bacteriology | 2007

Global Gene Expression Patterns of Nostoc punctiforme in Steady-State Dinitrogen-Grown Heterocyst-Containing Cultures and at Single Time Points during the Differentiation of Akinetes and Hormogonia

Elsie L. Campbell; Michael L. Summers; Harry D. Christman; Miriam E. Martin; John C. Meeks

The vegetative cells of the filamentous cyanobacterium Nostoc punctiforme can differentiate into three mutually exclusive cell types: nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogomium filaments. A DNA microarray consisting of 6,893 N. punctiforme genes was used to identify the global transcription patterns at single time points in the three developmental states, compared to those in ammonium-grown time zero cultures. Analysis of ammonium-grown cultures yielded a transcriptome of 2,935 genes, which is nearly twice the size of a soluble proteome. The NH(4)(+)-grown transcriptome was enriched in genes encoding core metabolic functions. A steady-state N(2)-grown (heterocyst-containing) culture showed differential transcription of 495 genes, 373 of which were up-regulated. The majority of the up-regulated genes were predicted from studies of heterocyst differentiation and N(2) fixation; other genes are candidates for more detailed genetic analysis. Three days into the developmental process, akinetes showed a similar number of differentially expressed genes (497 genes), which were equally up- and down-regulated. The down-regulated genes were enriched in core metabolic functions, consistent with entry into a nongrowth state. There were relatively few adaptive genes up-regulated in 3-day akinetes, and there was little overlap with putative heterocyst developmental genes. There were 1,827 differentially transcribed genes in 24-h hormogonia, which was nearly fivefold greater than the number in akinete-forming or N(2)-fixing cultures. The majority of the up-regulated adaptive genes were genes encoding proteins for signal transduction and transcriptional regulation, which is characteristic of a motile filament that is poised to sense and respond to the environment. The greatest fraction of the 883 down-regulated genes was involved in core metabolism, also consistent with entry into a nongrowth state. The differentiation of heterocysts (steady state, N(2) grown), akinetes, and hormogonia appears to involve the up-regulation of genes distinct for each state.


Journal of Bacteriology | 2007

Molecular Genetics and Genomic Analysis of Scytonemin Biosynthesis in Nostoc punctiforme ATCC 29133

Tanya Soule; Valerie Stout; Wesley D. Swingley; John C. Meeks; Ferran Garcia-Pichel

The indole-alkaloid scytonemin is the most common and widespread sunscreen among cyanobacteria. Previous research has focused on its nature, distribution, ecology, physiology, and biochemistry, but its molecular genetics have not been explored. In this study, a scytonemin-deficient mutant of the cyanobacterium Nostoc punctiforme ATCC 29133 was obtained by random transposon insertion into open reading frame NpR1273. The absence of scytonemin under conditions of induction by UV irradiation was the single phenotypic difference detected in a comparative analysis of the wild type and the mutant. A cause-effect relationship between the phenotype and the mutation in NpR1273 was demonstrated by constructing a second scytoneminless mutant through directed mutagenesis of that gene. The genomic region flanking the mutation revealed an 18-gene cluster (NpR1276 to NpR1259). Four putative genes in the cluster, NpR1274 to NpR1271, with no previously known functions, are likely to be involved in the assembly of scytonemin. Also in this cluster, there is a redundant set of genes coding for shikimic acid and aromatic amino acid biosynthesis enzymes, leading to the production of tryptophan and tyrosine, which are likely to be biosynthetic precursors of the sunscreen.


Microbiology | 1994

Transposon mutagenesis of Nostoc sp. strain ATCC 29133, a filamentous cyanobacterium with multiple cellular differentiation alternatives

Michael F. Cohen; James G. Wallis; Elsie L. Campbell; John C. Meeks

Nostoc sp. strain ATCC 29133 (PCC 73102; Nostoc 29133) is a symbiotically-competent, facultatively heterotrophic, diazotrophic cyanobacterium with the capacity to differentiate specialized cells such as heterocysts, akinetes and hormogonial filaments. We have optimized several methods for physiological and molecular genetic analysis of Nostoc 29133. By use of a Tn5 derivative, Tn5-1063 (Km(r)Bm(r)Sm(r)), delivered by conjugation from Escherichia coli, antibiotic-resistant mutants of Nostoc 29133 were generated at a frequency of approximately 1 x 10(-6), 0.4% of which expressed a nitrogen fixation (heterocyst) defective phenotype. Mutant strain UCD 328 was isolated after co-culture of 86 Nostoc 29133::Tn5-1063 clones with the symbiotic plant partner, Anthoceros punctatus; strain UCD 328 expressed a symbiotic phenotype of increased frequency of hormogonia-dependent infection. The transposon and flanking genomic DNA was recovered from strain UCD 328, the mutation and phenotype reconstructed by homologous recombination in Nostoc 29133, and the transposition site identified from a Nostoc 29133 genomic library. Transposon mutagenesis has thus provided the means for isolation and identification of developmental and symbiotic-specific genes of Nostoc 29133.


Molecular Genetics and Genomics | 1984

Covalent modification of bacterial glutamine synthetase: physiological significance

Sydney Kustu; Jodi Hirschman; Doris Burton; John Jelesko; John C. Meeks

SummaryStadtman, Holzer and their colleagues (reviewed in Stadtman and Ginsburg 1974) demonstrated that the enzyme glutamine synthetase (GS) [L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.2] is covalently modified by adenylylation in a variety of bacterial genera and that the modification is reversible. These studies further indicated that adenylylated GS is the less active form in vitro. To assess the physiological significance of adenylylation of GS we have determined the growth defects of mutant strains (glnE) of S. typhimurium that are unable to modify GS and we have determined the basis for these growth defects. The glnE strains, which lack GS adenylyl transferase activity (ATP: [L-glutamate: ammonia ligase (ADP-forming)] adenylyltransferase, EC 2.7.7.42), show a large growth defect specifically upon shift from a nitrogen-limited growth medium to medium containing excess ammonium (NH4+). The growth defect appears to be due to very high catalytic activity of GS after shift, which lowers the intracellular glutamate pool to ∼10% that under preshift conditions. Consistent with this view, recovery of a rapid growth rate on NH4+ is accompanied by an increase in the glutamate pool. The glnE strains have normal ATP pools after shift. They synthesize very large amounts of glutamine and excrete glutamine into the medium, but excess glutamine does not seem to inhibit growth. We hypothesize that a major function for adenylylation of bacterial GS is to protect the cellular glutamate pool upon shift to NH4+-excess conditions and thereby to allow rapid growth.


Journal of Bacteriology | 2001

The hetF Gene Product Is Essential to Heterocyst Differentiation and Affects HetR Function in the Cyanobacterium Nostoc punctiforme

Francis C. Y. Wong; John C. Meeks

A novel gene, hetF, was identified as essential for heterocyst development in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133. In the absence of combined nitrogen, hetF mutants were unable to differentiate heterocysts, whereas extra copies of hetF in trans induced the formation of clusters of heterocysts. Sequences hybridizing to a hetF probe were detected only in heterocyst-forming cyanobacteria. The inactivation and multicopy effects of hetF were similar to those of hetR, which encodes a self-degrading serine protease thought to be a central regulator of heterocyst development. Increased transcription of hetR begins in developing cells 3 to 6 h after deprivation for combined nitrogen (N step-down), and the HetR protein specifically accumulates in heterocysts. In the hetF mutant, this increase in hetR transcription was delayed, and a hetR promoter::green fluorescent protein (GFP) transcriptional reporter indicated that increased transcription of hetR occurred in all cells rather than only in developing heterocysts. When a fully functional HetR-GFP fusion protein was expressed in the hetF mutant from a multicopy plasmid, HetR-GFP accumulated nonspecifically in all cells under nitrogen-replete conditions; when expressed in the wild type, HetR-GFP was observed only in heterocysts after N step-down. HetF therefore appears to cooperate with HetR in a positive regulatory pathway and may be required for the increased transcription of hetR and localization of the HetR protein in differentiating heterocysts.


Archives of Microbiology | 1997

A polyketide-synthase-like gene is involved in the synthesis of heterocyst glycolipids in Nostoc punctiforme strain ATCC 29133

Elsie L. Campbell; Michael F. Cohen; John C. Meeks

Abstract A Tn5-1063-derived mutant of Nostoc punctiforme strain ATCC 29133 was unable to fix N2 in air although it reduced acetylene in the absence of O2. Mutant strain UCD 307 formed cells morphologically similar to heterocysts, but it failed to synthesize the characteristic heterocyst glycolipids. Sequence analysis around the site of insertion revealed an ORF of 3,159 base pairs, termed hglE. hglE putatively encodes a 115.4-kDa protein containing two domains with conserved amino acid sequences identified with acyl transferase and the chain length factor variation of β-ketoacyl synthase active sites. These active sites are characteristic of polyketide and fatty acid synthases. The N. punctiforme strain 29133 hglE gene is transcribed only under nitrogen-limiting growth conditions. The hglE gene, or similar sequences, was found in all other heterocyst-forming cyanobacteria surveyed and was absent in unicellular Synechococcus sp. strain PCC 7942. Based on these results, we propose that the synthesis of heterocyst glycolipids follows a pathway characteristic of polyketide synthesis and involves similar large, multienzyme complexes.

Collaboration


Dive into the John C. Meeks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Summers

California State University

View shared research outputs
Top Co-Authors

Avatar

C. Peter Wolk

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kari D. Hagen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge