Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Olsen is active.

Publication


Featured researches published by John C. Olsen.


The New England Journal of Medicine | 1995

A Controlled Study of Adenoviral-Vector–Mediated Gene Transfer in the Nasal Epithelium of Patients with Cystic Fibrosis

Kathy Hohneker; Zhaoqing Zhou; John C. Olsen; Terry L. Noah; Ping Chuan hu; Margaret W. Leigh; John F. Engelhardt; Lloyd J. Edwards; Kim R. Jones; Mariann Grossman; James M. Wilson; Larry G. Johnson; Richard C. Boucher

BACKGROUND Cystic fibrosis is a monogenic disease that deranges multiple systems of ion transport in the airways, culminating in chronic infection and destruction of the lung. The introduction of a normal copy of the cystic fibrosis transmembrane conductance regulator (CFTR) gene into the airway epithelium through gene transfer is an attractive approach to correcting the underlying defects in patients with cystic fibrosis. We tested the feasibility of gene therapy using adenoviral vectors in the nasal epithelium of such patients. METHODS An adenoviral vector containing the normal CFTR complementary DNA in four logarithmically increasing doses (estimated multiplicity of infection, 1, 10, 100, and 1000), or vehicle alone, was administered in a randomized, blinded fashion to the nasal epithelium of 12 patients with cystic fibrosis. Gene transfer was quantitated by molecular techniques that detected the expression of CFTR messenger RNA and by functional measurements of transepithelial potential differences (PDs) to assess abnormalities of ion transport specific to cystic fibrosis. The safety of this treatment was monitored by nasal lavage and biopsy to assess inflammation and vector replication. RESULTS The adenoviral vector was detected in nasal-lavage fluid by culture, the polymerase chain reaction (PCR), or both in a dose-dependent fashion for up to eight days after vector administration. There was molecular evidence of gene transfer by reverse-transcriptase PCR assays or in situ hybridization in five of six patients treated at the two highest doses. However, the percentage of epithelial cells transfected by the vector was very low (< 1 percent), and measurement of PD across the epithelium revealed no significant restoration of chloride transport or normalization of sodium transport. At the lower doses of vector, there were no toxic effects. However, at the highest dose there was mucosal inflammation in two of three patients. CONCLUSIONS In patients with cystic fibrosis, adenoviral-vector-mediated transfer of the CFTR gene did not correct functional defects in nasal epithelium, and local inflammatory responses limited the dose of adenovirus that could be administered to overcome the inefficiency of gene transfer.


Science | 1996

Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

Gerald B. Pier; Martha Grout; Tanweer Zaidi; John C. Olsen; Larry G. Johnson; James R. Yankaskas; J B Goldberg

Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.


Oncogene | 2002

Immortalization and transformation of primary human airway epithelial cells by gene transfer

Ante S. Lundberg; Scott H. Randell; Sheila A. Stewart; Brian Elenbaas; Kimberly A. Hartwell; Mary W. Brooks; Mark D. Fleming; John C. Olsen; Scott W Miller; Robert A. Weinberg; William C. Hahn

One critical step in the development of a cancerous cell is its acquisition of an unlimited replicative lifespan, the process termed immortalization. Experimental model systems designed to study cellular transformation ex vivo have relied to date on the in vitro selection of a subpopulation of cells that have become immortalized through treatment with chemical or physical mutagens and the selection of rare clonal variants. In this study, we describe the direct immortalization of primary human airway epithelial cells through the successive introduction of the Simian Virus 40 Early Region and the telomerase catalytic subunit hTERT. Cells immortalized in this way are now responsive to malignant transformation by an introduced H-ras or K-ras oncogene. These immortalized human airway epithelial cells, which have been created through the stepwise introduction of genetic alterations, provide a novel experimental model system with which to study further the biology of the airway epithelial cell and to dissect the molecular basis of lung cancer pathogenesis.


Immunity | 1997

Induction of MHC Class I Expression by the MHC Class II Transactivator CIITA

Brian K. Martin; Keh Chuang Chin; John C. Olsen; Cheryl Skinner; Anup Dey; Keiko Ozato; Jenny P.-Y. Ting

Major histocompatibility complex (MHC) class I-deficient cell lines were used to demonstrate that the MHC class II transactivator (CIITA) can induce surface expression of MHC class I molecules. CIITA induces the promoter of MHC class I heavy chain genes. The site alpha DNA element is the target for CIITA-induced transactivation of class I. In addition, interferon-gamma (IFNgamma)-induced MHC class I expression also requires an intact site alpha. The G3A cell line, which is defective in CIITA induction, does not induce MHC class I antigen and promoter in response to IFNgamma. Trans-dominant-negative forms of CIITA reduce class I MHC promoter function and surface antigen expression. Collectively, these data argue that CIITA has a role in class I MHC gene induction.


The Journal of General Physiology | 2002

Regulation of murine airway surface liquid volume by CFTR and Ca2+-activated Cl- conductances

Robert Tarran; Matthew E. Loewen; Anthony M. Paradiso; John C. Olsen; Micheal A. Gray; Barry E. Argent; Richard C. Boucher; Sherif E. Gabriel

Two Cl− conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca2+-activated Cl− conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial. Hence, we have investigated the effects of CFTR on CaCC activity and have also assessed the relative contributions of these two conductances to airway surface liquid (ASL) height (volume) in murine tracheal epithelia. We find that CaCC is up-regulated in intact murine CF tracheal epithelia, which leads to an increase in UTP-mediated Cl−/volume secretion. This up-regulation is dependent on cell polarity and is lost in nonpolarized epithelia. We find no role for an increased electrical driving force in CaCC up-regulation but do find an increased Ca2+ signal in response to mucosal nucleotides that may contribute to the increased Cl−/volume secretion seen in intact epithelia. CFTR plays a critical role in maintaining ASL height under basal conditions and accordingly, ASL height is reduced in CF epithelia. In contrast, CaCC does not appear to significantly affect basal ASL height, but does appear to be important in regulating ASL height in response to released agonists (e.g., mucosal nucleotides). We conclude that both CaCC and the Ca2+ signal are increased in CF airway epithelia, and that they contribute to acute but not basal regulation of ASL height.


Proceedings of the National Academy of Sciences of the United States of America | 2009

SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage

Agustin Garcia-Caballero; Julia E. Rasmussen; Erol Gaillard; Michael J. Watson; John C. Olsen; Scott H. Donaldson; M. Jackson Stutts; Robert Tarran

Many epithelia, including the superficial epithelia of the airways, are thought to secrete “volume sensors,” which regulate the volume of the mucosal lining fluid. The epithelial Na+ channel (ENaC) is often the rate limiting factor in fluid absorption, and must be cleaved by extracellular and/or intracellular proteases before it can conduct Na+ and absorb excess mucosal liquid, a process that can be blocked by proteases inhibitors. In the airways, airway surface liquid dilution or removal activates ENaC. Therefore, we hypothesized that endogenous proteases are membrane-anchored, whereas endogenous proteolysis inhibitors are soluble and can function as airway surface liquid volume sensors to inhibit ENaC activity. Using a proteomic approach, we identified short palate, lung, and nasal epithelial clone (SPLUNC)1 as a candidate volume sensor. Recombinant SPLUNC1 inhibited ENaC activity in both human bronchial epithelial cultures and Xenopus oocytes. Knockdown of SPLUNC1 by shRNA resulted in a failure of bronchial epithelial cultures to regulate ENaC activity and airway surface liquid volume, which was restored by adding recombinant SPLUNC1 to the airway surface liquid. Despite being able to inhibit ENaC, recombinant SPLUNC1 had little effect on extracellular serine protease activity. However, SPLUNC1 specifically bound to ENaC, preventing its cleavage and activation by serine proteases. SPLUNC1 is highly expressed in the airways, as well as in colon and kidney. Thus, we propose that SPLUNC1 is secreted onto mucosal surfaces as a soluble volume sensor whose concentration and dilution can regulate ENaC activity and mucosal volumes, including that of airway surface liquid.


Journal of Virology | 2008

Biochemical Characterization of a Recombinant TRIM5α Protein That Restricts Human Immunodeficiency Virus Type 1 Replication

Charles Langelier; Virginie Sandrin; Debra M. Eckert; Devin E. Christensen; Viswanathan Chandrasekaran; Steven L. Alam; Christopher Aiken; John C. Olsen; Alak Kanti Kar; Joseph Sodroski; Wesley I. Sundquist

ABSTRACT The rhesus monkey intrinsic immunity factor TRIM5αrh recognizes incoming capsids from a variety of retroviruses, including human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV), and inhibits the accumulation of viral reverse transcripts. However, direct interactions between restricting TRIM5α proteins and retroviral capsids have not previously been demonstrated using pure recombinant proteins. To facilitate structural and mechanistic studies of retroviral restriction, we have developed methods for expressing and purifying an active chimeric TRIM5αrh protein containing the RING domain from the related human TRIM21 protein. This recombinant TRIM5-21R protein was expressed in SF-21 insect cells and purified through three chromatographic steps. Two distinct TRIM5-21R species were purified and shown to correspond to monomers and dimers, as analyzed by analytical ultracentrifugation. Chemically cross-linked recombinant TRIM5-21R dimers and mammalian-expressed TRIM5-21R and TRIM5α proteins exhibited similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities, indicating that mammalian TRIM5α proteins are predominantly dimeric. Purified TRIM5-21R had ubiquitin ligase activity and could autoubquitylate with different E2 ubiquitin conjugating enzymes in vitro. TRIM5-21R bound directly to synthetic capsids composed of recombinant HIV-1 CA-NC proteins and to authentic EIAV core particles. HIV-1 CA-NC assemblies bound dimeric TRIM5-21R better than either monomeric TRIM5-21R or TRIM5-21R constructs that lacked the SPRY domain or its V1 loop. Thus, our studies indicate that TRIM5α proteins are dimeric ubiquitin E3 ligases that recognize retroviral capsids through direct interactions mediated by the SPRY domain and demonstrate that these activities can be recapitulated in vitro using pure recombinant proteins.


Gene Therapy | 2000

Pseudotyped human lentiviral vector-mediated gene transfer to airway epithelia in vivo

Larry G. Johnson; John C. Olsen; L. Naldini; Richard C. Boucher

We used a replication defective human lentiviral (HIV) vector encoding the lacZ cDNA and pseudotyped with the vesicular stomatitis virus (VSV) glycoprotein (G) to evaluate the utility of this vector system in airway epithelia. In initial studies, apical application of vector to polarized well differentiated human airway epithelial cell cultures produced minimal levels of transgene expression whereas basolateral application of vector enhanced levels of transduction approximately 30-fold. Direct in vivo delivery of HIV vectors to the nasal epithelium and tracheas of mice failed to mediate gene transfer, but injury with sulfur dioxide (SO2) before vector delivery enhanced gene transfer efficiency to the nasal epithelium of both mice and rats. SO2 injury also enhanced HIV vector-mediated gene transfer to the tracheas of rodents. These data suggest that SO2 injury increases access of vector to basal cells and/or the basolateral membrane of airway surface epithelial cells. Quantification of gene transfer efficiency in murine tracheas demonstrated that transduction was more efficient when vector was delivered on the day of exposure (7.0%, n = 4) than when vector was delivered on the day after SO2 exposure (1.7%, n = 4).


Laboratory Investigation | 2002

Immortal activated human hepatic stellate cells generated by ectopic telomerase expression.

Bernd Schnabl; Youkyung Hwang Choi; John C. Olsen; Curt H. Hagedorn; David A. Brenner

Telomere shortening controls the entry of cells into senescence. Functional expression of the telomerase catalytic subunit (human telomerase reverse transcriptase or hTERT) stabilizes telomere length and extends the life span of various normal human cells. Our aim was to assess the role of telomerase activity and telomere maintenance in regulating the proliferation of activated human hepatic stellate cells (HSCs), to establish an immortal human HSC cell line. Human HSCs were isolated from surgical specimens of normal liver and infected with a retrovirus expressing hTERT. Ectopic expression of hTERT reconstituted telomerase activity and maintained telomere length in human HSCs. Control human HSCs, which were either not infected or infected with a retroviral vector containing only the neomycin resistance gene, showed no detectable telomerase activity and had slightly shortened telomeres. These telomerase-negative HSCs entered a nondividing state after about 9 to 15 passages and senesced. In contrast, telomerase-positive HSCs to date have undergone 69 passages. Telomerase-positive HSCs did not undergo oncogenic transformation and exhibit morphologic and functional characteristics of activated HSCs. Microarray and RT-PCR analysis showed that mRNA expression patterns in telomerase-positive HSCs are very similar to those in activated human HSCs. Plating telomerase-positive HSCs on a basement membrane-like matrix reverts them toward a more quiescent phenotype. In conclusion, introduction of hTERT into activated human HSCs immortalizes them and maintains their activated phenotype. This newly developed cell line will be a useful tool to study the cell biology of human HSCs in culture.


Journal of Virology | 2005

Restriction of Feline Immunodeficiency Virus by Ref1, Lv1, and Primate TRIM5α Proteins

Dyana T. Saenz; Wulin Teo; John C. Olsen; Eric M. Poeschla

ABSTRACT The Ref1 and Lv1 postentry restrictions in human and monkey cells have been analyzed for lentiviruses in the primate and ungulate groups, but no data exist for the third (feline) group. We compared feline immunodeficiency virus (FIV) to other restricted (human immunodeficiency virus type 1 [HIV-1], equine infectious anemia virus [EIAV]) and unrestricted (NB-tropic murine leukemia virus [NB-MLV]) retroviruses across wide ranges of viral inputs in cells from multiple primate and nonprimate species. We also characterized restrictions conferred to permissive feline and canine cells engineered to express rhesus and human TRIM5α proteins and performed RNA interference (RNAi) against endogenous TRIM5α. We find that expression of rhesus or human TRIM5α proteins in feline cells restricts FIV, impairing pseudotyped vector transduction and viral replication, but rhesus TRIM5α is more restricting than human TRIM5α. Notably, however, canine cells did not support restriction by human TRIM5α and supported minimal restriction by rhesus TRIM5α, suggesting that these proteins may not function autonomously or that a canine factor interferes. Stable RNAi knockdown of endogenous rhesus TRIM5α resulted in marked increases in FIV and HIV-1 infectivities while having no effect on NB-MLV. A panel of nonprimate cell lines varied widely in susceptibility to lentiviral vector transduction, but normalized FIV and HIV-1 vectors varied concordantly. In contrast, in human and monkey cells, relative restriction of FIV compared to HIV-1 varied from none to substantial, with the greatest relative infectivity deficit for FIV vectors observed in human T-cell lines. Endogenous and introduced TRIM5α restrictions of FIV could be titrated by coinfections with FIV, HIV-1, or EIAV virus-like particles. Arsenic trioxide had complex and TRIM5α-independent enhancing effects on lentiviral but not NB-MLV infection. Implications for human gene therapy are discussed.

Collaboration


Dive into the John C. Olsen's collaboration.

Top Co-Authors

Avatar

Richard C. Boucher

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Larry G. Johnson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Manij Patel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Pickles

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ronald Swanstrom

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Angela M. Giddings

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Lawrence E. Ostrowski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David A. Wilcox

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Diana K. Hoganson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert Tarran

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge