Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John C. Victor is active.

Publication


Featured researches published by John C. Victor.


The New England Journal of Medicine | 2010

Effect of Human Rotavirus Vaccine on Severe Diarrhea in African Infants

Shabir A. Madhi; Nigel A. Cunliffe; Duncan Steele; Desiree Witte; Mari Kirsten; Cheryl Louw; Bagrey Ngwira; John C. Victor; Paul Gillard; Brigitte Cheuvart; Htay Htay Han; Kathleen M. Neuzil

BACKGROUND Rotavirus is the most common cause of severe gastroenteritis among young children worldwide. Data are needed to assess the efficacy of the rotavirus vaccine in African children. METHODS We conducted a randomized, placebo-controlled, multicenter trial in South Africa (3166 infants; 64.1% of the total) and Malawi (1773 infants; 35.9% of the total) to evaluate the efficacy of a live, oral rotavirus vaccine in preventing severe rotavirus gastroenteritis. Healthy infants were randomly assigned in a 1:1:1 ratio to receive two doses of vaccine (in addition to one dose of placebo) or three doses of vaccine--the pooled vaccine group--or three doses of placebo at 6, 10, and 14 weeks of age. Episodes of gastroenteritis caused by wild-type rotavirus during the first year of life were assessed through active follow-up surveillance and were graded with the use of the Vesikari scale. RESULTS A total of 4939 infants were enrolled and randomly assigned to one of the three groups; 1647 infants received two doses of the vaccine, 1651 infants received three doses of the vaccine, and 1641 received placebo. Of the 4417 infants included in the per-protocol efficacy analysis, severe rotavirus gastroenteritis occurred in 4.9% of the infants in the placebo group and in 1.9% of those in the pooled vaccine group (vaccine efficacy, 61.2%; 95% confidence interval, 44.0 to 73.2). Vaccine efficacy was lower in Malawi than in South Africa (49.4% vs. 76.9%); however, the number of episodes of severe rotavirus gastroenteritis that were prevented was greater in Malawi than in South Africa (6.7 vs. 4.2 cases prevented per 100 infants vaccinated per year). Efficacy against all-cause severe gastroenteritis was 30.2%. At least one serious adverse event was reported in 9.7% of the infants in the pooled vaccine group and in 11.5% of the infants in the placebo group. CONCLUSIONS Human rotavirus vaccine significantly reduced the incidence of severe rotavirus gastroenteritis among African infants during the first year of life. (ClinicalTrials.gov number, NCT00241644.)


The Lancet | 2010

Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial

K. Zaman; Dang Duc Anh; John C. Victor; Sunheang Shin; Yunus; Michael J. Dallas; Goutam Podder; Vu Dinh Thiem; Le Thi Phuong Mai; Stephen P. Luby; Le Huu Tho; Kristen D.C. Lewis; Stephen B. Rivers; David A. Sack; Florian Schödel; A. Duncan Steele; Kathleen M. Neuzil; Max Ciarlet

BACKGROUND Rotavirus vaccine has proved effective for prevention of severe rotavirus gastroenteritis in infants in developed countries, but no efficacy studies have been done in developing countries in Asia. We assessed the clinical efficacy of live oral pentavalent rotavirus vaccine for prevention of severe rotavirus gastroenteritis in infants in Bangladesh and Vietnam. METHODS In this multicentre, double-blind, placebo-controlled trial, undertaken in rural Matlab, Bangladesh, and urban and periurban Nha Trang, Vietnam, infants aged 4-12 weeks without symptoms of gastrointestinal disorders were randomly assigned (1:1) to receive three oral doses of pentavalent rotavirus vaccine 2 mL or placebo at around 6 weeks, 10 weeks, and 14 weeks of age, in conjunction with routine infant vaccines including oral poliovirus vaccine. Randomisation was done by computer-generated randomisation sequence in blocks of six. Episodes of gastroenteritis in infants who presented to study medical facilities were reported by clinical staff and from parent recollection. The primary endpoint was severe rotavirus gastroenteritis (Vesikari score >or=11) arising 14 days or more after the third dose of placebo or vaccine to end of study (March 31, 2009; around 21 months of age). Analysis was per protocol; infants who received scheduled doses of vaccine or placebo without intervening laboratory-confirmed naturally occurring rotavirus disease earlier than 14 days after the third dose and had complete clinical and laboratory results were included in the analysis. This study is registered with ClinicalTrials.gov, number NCT00362648. FINDINGS 2036 infants were randomly assigned to receive pentavalent rotavirus vaccine (n=1018) or placebo (n=1018). 991 infants assigned to pentavalent rotavirus vaccine and 978 assigned to placebo were included in the per-protocol analysis. Median follow up from 14 days after the third dose of placebo or vaccine until final disposition was 498 days (IQR 480-575). 38 cases of severe rotavirus gastroenteritis (Vesikari score >or=11) were reported during more than 1197 person-years of follow up in the vaccine group, compared with 71 cases in more than 1156 person years in the placebo group, resulting in a vaccine efficacy of 48.3% (95% CI 22.3-66.1) against severe disease (p=0.0005 for efficacy >0%) during nearly 2 years of follow-up. 25 (2.5%) of 1017 infants assigned to receive vaccine and 20 (2.0%) of 1018 assigned to receive placebo had a serious adverse event within 14 days of any dose. The most frequent serious adverse event was pneumonia (vaccine 12 [1.2%]; placebo 15 [1.5%]). INTERPRETATION In infants in developing countries in Asia, pentavalent rotavirus vaccine is safe and efficacious against severe rotavirus gastroenteritis, and our results support expanded WHO recommendations to promote its global use. FUNDING PATH (GAVI Alliance grant) and Merck.


The New England Journal of Medicine | 2009

Comparative Efficacy of Inactivated and Live Attenuated Influenza Vaccines

Arnold S. Monto; Suzanne E. Ohmit; Joshua G. Petrie; Emileigh Johnson; Rachel Truscon; Esther Teich; Judy Rotthoff; Matthew L. Boulton; John C. Victor

BACKGROUND The efficacy of influenza vaccines may vary from year to year, depending on a variety of factors, and may differ for inactivated and live attenuated vaccines. METHODS We carried out a randomized, double-blind, placebo-controlled trial of licensed inactivated and live attenuated influenza vaccines in healthy adults during the 2007-2008 influenza season and estimated the absolute and relative efficacies of the two vaccines. RESULTS A total of 1952 subjects were enrolled and received study vaccines in the fall of 2007. Influenza activity occurred from January through April 2008, with the circulation of influenza types A (H3N2) (about 90%) and B (about 9%). Absolute efficacy against both types of influenza, as measured by isolating the virus in culture, identifying it on real-time polymerase-chain-reaction assay, or both, was 68% (95% confidence interval [CI], 46 to 81) for the inactivated vaccine and 36% (95% CI, 0 to 59) for the live attenuated vaccine. In terms of relative efficacy, there was a 50% (95% CI, 20 to 69) reduction in laboratory-confirmed influenza among subjects who received inactivated vaccine as compared with those given live attenuated vaccine. The absolute efficacy against the influenza A virus was 72% (95% CI, 49 to 84) for the inactivated vaccine and 29% (95% CI, -14 to 55) for the live attenuated vaccine, with a relative efficacy of 60% (95% CI, 33 to 77) for the inactivated vaccine. CONCLUSIONS In the 2007-2008 season, the inactivated vaccine was efficacious in preventing laboratory-confirmed symptomatic influenza A (predominately H3N2) in healthy adults. The live attenuated vaccine also prevented influenza illnesses but was less efficacious. (ClinicalTrials.gov number, NCT00538512.)


The Journal of Infectious Diseases | 2008

Prevention of Symptomatic Seasonal Influenza in 2005–2006 by Inactivated and Live Attenuated Vaccines

Suzanne E. Ohmit; John C. Victor; Esther Teich; Rachel Truscon; Judy Rotthoff; Duane W. Newton; Sarah A. Campbell; Matthew L. Boulton; Arnold S. Monto

BACKGROUND The efficacy of influenza vaccines may vary annually. In 2004-2005, when antigenically drifted viruses were circulating, a randomized, placebo-controlled trial involving healthy adults showed that inactivated vaccine appeared to be efficacious, whereas live attenuated vaccine appeared to be less so. METHODS In 2005-2006, we continued our trial, examining the absolute and relative efficacies of the live attenuated and inactivated vaccines in preventing laboratory-confirmed symptomatic influenza. RESULTS A total of 2058 persons were vaccinated in October and November 2005. Studywide influenza activity was prolonged but of low intensity; type A (H3N2) virus was circulating, which was antigenically similar to the vaccine strain. The absolute efficacy of the inactivated vaccine was 16% (95% confidence interval [CI], -171% to 70%) for the virus identification end point (virus isolation in cell culture or identification through polymerase chain reaction) and 54% (95% CI, 4%-77%) for the primary end point (virus isolation or increase in serum antibody titer). The absolute efficacies of the live attenuated vaccine for these end points were 8% (95% CI, -194% to 67%) and 43% (95% CI, -15% to 71%), respectively. CONCLUSIONS With serologic end points included, efficacy was demonstrated for the inactivated vaccine in a year with low influenza attack rates. The efficacy of the live attenuated vaccine was slightly less than that of the inactivated vaccine, but not statistically greater than that of the placebo.


Vaccine | 2012

Efficacy of human rotavirus vaccine against severe gastroenteritis in Malawian children in the first two years of life: a randomized, double-blind, placebo controlled trial.

Nigel A. Cunliffe; Desiree Witte; Bagrey Ngwira; Stacy Todd; Nancy J. Bostock; Ann M. Turner; Philips Chimpeni; John C. Victor; A. Duncan Steele; Alain Bouckenooghe; Kathleen M. Neuzil

Rotavirus gastroenteritis is a major cause of morbidity and mortality among African infants and young children. A phase III, placebo-controlled, multi-centre clinical trial of a live, oral G1P[8] human rotavirus vaccine (RIX4414) undertaken in Malawi and South Africa significantly reduced the incidence of severe rotavirus gastroenteritis in the first year of life. We now report on vaccine efficacy in the Malawi cohort of children who were followed into the second year of life. A total of 1773 healthy infants were enrolled in Blantyre, Malawi into three groups. Two groups received three doses of RIX4414 or placebo at age 6, 10, and 14 weeks and the third group received placebo at 6 weeks and RIX4414 at age 10 and 14 weeks. Subjects were followed by weekly home visits for episodes of gastroenteritis until 1 year of age, and were then re-consented for further follow-up to 18-24 months of age. Severity of gastroenteritis episodes was graded according to the Vesikari scoring system. Seroconversion for anti-rotavirus IgA was determined on a subset of children by using ELISA on pre- and post-vaccine blood samples. Rotavirus VP7 (G) and VP4 (P) genotypes were determined by RT-PCR. A total of 70/1030 (6.8%, 95% CI 5.3-8.5) subjects in the pooled (2 dose plus 3 dose) RIX4414 group compared with 53/483 (11.0%, 8.3-14.1) subjects in the placebo group developed severe rotavirus gastroenteritis in the entire follow-up period (vaccine efficacy 38.1% (9.8-57.3)). The point estimate of efficacy in the second year of life (17.6%; -59.2 to 56.0) was lower than in the first year of life (49.4%; 19.2-68.3). There were non-significant trends towards a higher efficacy in the second year of life among children who received the three-dose schedule compared with the two-dose schedule, and a higher anti-rotavirus IgA seroresponse rate in the three-dose RIX4414 group. Rotavirus strains detected included genotype G12 (31%); G9 (23%); and G8 (18%); only 18% of strains belonged to the G1P[8] genotype. While the optimal dosing schedule of RIX4414 in African infants requires further investigation, vaccination with RIX4414 significantly reduced the incidence of severe gastroenteritis caused by diverse rotavirus strains in an impoverished African population with high rotavirus disease burden in the first two years of life.


Chest | 2010

Influenza-Associated Cystic Fibrosis Pulmonary Exacerbations

Justin R. Ortiz; Kathleen M. Neuzil; John C. Victor; Anna Wald; Moira L. Aitken; Christopher H. Goss

BACKGROUND Although cystic fibrosis (CF) is the most common inherited respiratory disease, the burden of influenza among individuals with CF is not well characterized. METHODS We used the CF Foundation Patient Registry to determine the relationship between pulmonary exacerbation incidence rate and influenza virus season from July 2003 through June 2007. The outcome of interest, pulmonary exacerbation, was defined as treatment of a respiratory illness with IV antibiotics. Each influenza season was defined as all months during which >/= 15% of laboratory tests for influenza virus were positive in the US influenza virologic surveillance system. We calculated incidence rates of pulmonary exacerbation during the influenza and summertime seasons as well as relative rates with 95% CIs. A multivariate regression model adjusted for demographic and clinical predictors. RESULTS In 2003, the patient cohort size was 21,506 patients, and 7,727 patients experienced at least one pulmonary exacerbation. The overall pulmonary exacerbation incidence rate in the influenza season was 595.0 per 10,000 person-months compared with a summertime baseline of 549.6 per 10,000 person-months. The incidence rate ratio was 1.08 (95% CI: 1.06, 1.10). Multivariate analysis did not change our estimate of risk (adjusted odds ratio: 1.07; 95% CI: 1.05, 1.10). An estimated annual excess of 147.6 per 10,000 person-months or an excess 2.1% of total exacerbations occur during the influenza season. CONCLUSION Our data demonstrate a substantial contribution of the influenza season to CF morbidity. Further studies to determine any causal link between influenza infection and CF pulmonary exacerbations are necessary.


Vaccine | 2012

Analyses of health outcomes from the 5 sites participating in the Africa and Asia clinical efficacy trials of the oral pentavalent rotavirus vaccine.

Robert F. Breiman; K. Zaman; George Armah; Samba O. Sow; Dang Duc Anh; John C. Victor; Darcy A. Hille; Max Ciarlet; Kathleen M. Neuzil

BACKGROUND Efficacy of the pentavalent rotavirus vaccine (PRV), RotaTeq(®), against severe rotavirus gastroenteritis (RVGE) was evaluated in two double-blind, placebo-controlled, multicenter Phase III clinical trials conducted in GAVI-eligible countries in Africa (Ghana, Kenya, and Mali) and in Asia (Bangladesh and Vietnam) from March 2007 through March 2009. The findings from each continent have been analyzed and presented separately, according to a single identical protocol. Ad hoc analyses combining data from the five sites were performed to further assess the impact of PRV. METHODS 6674 infants (4705 infants from Africa and 1969 infants from Asia), randomized 1:1 to receive 3 doses of PRV/placebo at approximately 6-, 10-, and 14-weeks of age according to each countrys EPI schedule, were included in the per protocol efficacy analysis. Breastfeeding and concomitant administration of EPI vaccines, including OPV, were allowed. Episodes of gastroenteritis (GE) in infants who presented to study facilities were captured and scored using the 20-point Vesikari scale. Stool samples were analyzed by rotavirus-specific EIA to detect presence of rotavirus antigen and RT-PCR to determine the G/P genotypes. We assessed efficacy to prevent all-cause GE and RVGE at a variety of cut-off points (score≥11, severe; score≥15, very severe). RESULTS Vaccine efficacy (VE) against RVGE, regardless of serotype, through the entire follow-up period for any severity, severe (score≥11), and very severe (score≥15) was 33.9%, 95% CI (22.7, 43.5), 42.5%, 95% CI (27.4, 54.6), and 51.2%, 95% CI (26.3, 68.2), respectively. Through the first year of life, VE against severe RVGE was 58.9%, 95% CI (40.0, 72.3) and against all-cause severe GE was 23.0%, 95% CI (5.4, 37.3). VE against severe RVGE caused by non-vaccine G serotypes, G8 and G9, through the entire follow-up period was 87.5%, 95% CI (6.8, 99.7) and 48.0%, 95% CI (-5.5, 75.6), respectively. All G8 strains were associated with P2A[6] (a P-type not contained in PRV), while the majority of the G9 strains were associated with P1A[8] (a P-type contained in PRV). CONCLUSIONS Combining data from the 5 sites strengthens the precision of VE estimates and reveals rising VE with increased RVGE severity. Extrapolating data from VE against severe GE and RVGE suggest that 39% of severe GE episodes during the first year of life were due to rotavirus, highlighting substantial, potentially preventable, public health burden of RVGE. PRV provides protection against non-vaccine serotypes (G8P2A[6]).


Vaccine | 2012

Efficacy of the oral pentavalent rotavirus vaccine in Mali

Samba O. Sow; Milagritos D. Tapia; Fadima Cheick Haidara; Max Ciarlet; Fatoumata Diallo; Mamoudou Kodio; Moussa Doumbia; Rokiatou Dembelé; Oumou Traoré; Uma Onwuchekwa; Kristen D.C. Lewis; John C. Victor; A. Duncan Steele; Kathleen M. Neuzil; Karen L. Kotloff; Myron M. Levine

The oral, pentavalent rotavirus vaccine (PRV), RotaTeq was assessed for prevention of severe rotavirus gastroenteritis (RVGE) in young children in two multi-site, randomized, placebo-controlled field trials; one in Asia (Vietnam and Bangladesh) and the other in sub-Saharan Africa (Ghana, Kenya and Mali). The efficacy results for the Mali site of the multi-country trial are presented here. We randomly assigned infants in a 1:1 ratio to receive 3 doses of PRV/placebo at approximately 6, 10, and 14 weeks of age. Gastroenteritis episodes were captured passively at the local health centers and by home visits. The primary study outcome was severe RVGE, as defined by a score of ≥ 11 using the Vesikari Clinical Scoring System occurring ≥ 14 days after the third dose until the end of the study. Other efficacy analyses included efficacy against severe RVGE through the first year and during the second years of life, as well as efficacy after receiving at least one dose of vaccine. In total, 1960 infants were enrolled in the trial at the Mali site and sera were collected on a subset of infants (approximately 150) for immunogenicity testing. In the first year of follow-up, largely due to cultural practices to visit traditional healers as the first point of care, the point estimate of efficacy was unreliable: the per protocol vaccine efficacy against severe RVGE was 1% (95% confidence interval [CI]: -431.7, 81.6); the intention-to-treat vaccine efficacy was 42.9% (95% CI: -125.7, 87.7). During the second year of follow-up, after the surveillance system was modified to adapt to local customs and health care seeking practices, the point estimate of per-protocol vaccine efficacy was 19.2% (95% CI: -23.1,47.3%). 82.5% of Malian infants (95% CI: 70.1,91.3%) who received PRV mounted a seroresponse (≥ 3-fold rise from baseline (prevaccination) to post-dose 3 vaccination) of anti-rotavirus immunoglobulin A antibody, with a post third-dose geometric mean titer (GMT) of 31.3 units/mL. By contrast, only 20.0% of placebo recipients (95% CI: 10.0, 33.7%) developed a seroresponse and the post-third dose GMT was 3.2 units/mL. None of the serious clinical adverse events observed were considered to be vaccine-related.


The Journal of Infectious Diseases | 2009

Rotavirus Vaccines for Infants in Developing Countries in Africa and Asia: Considerations from a World Health Organization–Sponsored Consultation

A. Duncan Steele; Manish M. Patel; Umesh D. Parashar; John C. Victor; Teresa Aguado; Kathleen M. Neuzil

The World Health Organization (WHO) and its international partners have prioritized the development of rotavirus vaccines for the past 3 decades. In November 2005, the WHOs Strategic Advisory Group of Experts first reviewed the clinical efficacy data from 2 new live attenuated oral rotavirus vaccines, which demonstrated excellent protective efficacy against severe rotavirus disease in regions where they were evaluated. Despite these successes, the WHO has urged the clinical evaluation of these vaccines in populations of Africa and Asia, where most of the deaths due to rotavirus occur, and has emphasized the need for ongoing postlicensure safety monitoring in countries introducing vaccines. Clinical studies in Africa and Asia will soon provide data on the efficacy of both new vaccines in these populations. A WHO international consultative meeting convened to evaluate how to use these imminent data for the future use of rotavirus vaccines in developing countries. In brief, it was agreed that (1) even vaccines with lesser efficacy in developing countries, compared with industrialized countries, would still lead to substantial public health benefits and would be cost-effective in saving lives in Africa and Asia; (2) criteria, such as the WHO mortality strata and local epidemiology of rotavirus infection, would be appropriate measures for extrapolating the clinical data to other regions and countries; and (3) research toward understanding the programmatic limitations of rotavirus vaccine use may help develop strategies to improve vaccine uptake and overall impact.


Vaccine | 2012

Immunogenicity of the pentavalent rotavirus vaccine among infants in two developing countries in Asia, Bangladesh and Vietnam.

Sunheang Shin; Dang Duc Anh; K. Zaman; M. Yunus; Le Thi Phuong Mai; Vu Dinh Thiem; Tasnim Azim; John C. Victor; Michael J. Dallas; A. Duncan Steele; Kathleen M. Neuzil; Max Ciarlet

BACKGROUND We evaluated the immunogenicity of the pentavalent rotavirus vaccine (PRV) in two GAVI-eligible Asian countries, Bangladesh and Vietnam, nested in a larger randomized, double-blind, placebo-controlled efficacy trial conducted over a two-year period from 2007 through 2009. METHODS 2036 infants were randomly assigned, in a 1:1 ratio, to receive three oral doses of PRV or placebo approximately at 6, 10, and 14 weeks of age. Concomitant use of EPI vaccines, including oral poliovirus vaccine (OPV) and diphtheria-tetanus-whole cell pertussis (DTwP) vaccine, was encouraged in accordance to the local EPI schedule. A total of 303 infants were evaluated for immunogenicity and blood samples were collected before the first dose (pD1) and approximately 14 days following the third dose (PD3). The seroresponse rates (≥3-fold rise from pD1 to PD3) and geometric mean titers (GMTs) were measured for anti-rotavirus immunoglobulin A (IgA) and serum neutralizing antibody (SNA) to human rotavirus serotypes G1, G2, G3, G4, and P1A[8], respectively. RESULTS Nearly 88% of the subjects showed a ≥3-fold increase in serum anti-rotavirus IgA response in the analysis of the two countries combined. When analyzed separately, the IgA response was lower in Bangladeshi children (78.1% [95% CI: 66.0, 87.5]) than in Vietnamese children (97.0% [95% CI: 89.6, 99.6]), with a PD3 GMT of 29.1 (units/mL) and 158.5 (units/mL), respectively. In the combined population, the SNA responses to the individual serotypes tested ranged from 10 (G3) to 50 (G1) percentage points lower than the responses shown in the developed countries. However, the SNA response to G3 in Vietnamese subjects was 37.3% (95% CI: 25.8, 50.0), which was similar to the G3 response rate in developed countries. CONCLUSIONS Three oral doses of PRV were immunogenic in two GAVI-eligible Asian countries: Bangladesh and Vietnam. The GMTs of both the serum anti-rotavirus IgA and SNA responses were generally higher in Vietnamese than in Bangladeshi children. The SNA responses varied by individual serotypes and were lower than the results from developed countries. The clinical significance of these observations is not understood because an immune correlate of protection has not been established.

Collaboration


Dive into the John C. Victor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Umesh D. Parashar

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Justin R. Ortiz

World Health Organization

View shared research outputs
Researchain Logo
Decentralizing Knowledge