Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Chaddock is active.

Publication


Featured researches published by John Chaddock.


Trends in Biochemical Sciences | 2002

Botulinum and tetanus neurotoxins: structure, function and therapeutic utility

Kathryn Turton; John Chaddock; K. Ravi Acharya

The toxic products of the anaerobic bacteria Clostridium botulinum, Clostridium butyricum, Clostridium barati and Clostridium tetani are the causative agents of botulism and tetanus. The ability of botulinum neurotoxins to disrupt neurotransmission, often for prolonged periods, has been exploited for use in several medical applications and the toxins, as licensed pharmaceutical products, now represent the therapeutics of choice for the treatment for several neuromuscular conditions. Research into the structures and activities of botulinum and tetanus toxins has revealed features of these proteins that might be useful in the design of improved vaccines, effective inhibitors and novel biopharmaceuticals. Here, we discuss the relationships between structure, mechanism of action and therapeutic use.


Journal of Biological Chemistry | 2002

Inhibition of Release of Neurotransmitters from Rat Dorsal Root Ganglia by a Novel Conjugate of a Clostridium botulinum Toxin A Endopeptidase Fragment and Erythrina cristagalli Lectin

Michael Duggan; Conrad P. Quinn; John Chaddock; John R. Purkiss; Frances Alexander; Sarah Doward; Sarah J. Fooks; Lorna M. Friis; Yper Hall; Elizabeth R. Kirby; Nicola Leeds; Hilary J. Moulsdale; Anthony H. Dickenson; G.Mark Green; Wahida Rahman; Rie Suzuki; Clifford C. Shone; Keith Foster

Clostridial neurotoxins potently and specifically inhibit neurotransmitter release in defined cell types. Here we report that a catalytically active derivative (termed LHN/A) of the type A neurotoxin from Clostridium botulinum has been coupled to a lectin obtained from Erythrina cristagalli to form a novel conjugate. This conjugate exhibits anin vitro selectivity for nociceptive afferents compared with the anatomically adjacent spinal neurons, as assessed usingin vitro primary neuronal culture systems to measure inhibition of release of neurotransmitters. Chemical conjugates prepared between E. cristagalli lectin and either natively sourced LHN/A or recombinant LHN/A purified from Escherichia coli are assessed, and equivalence of the recombinant material are demonstrated. Furthermore, the dependence of inhibition of neurotransmitter release on the cleavage of SNAP-25 is demonstrated through the use of an endopeptidase-deficient LHN/A conjugate variant. The duration of action of inhibition of neurotransmitter released by the conjugate in vitro is assessed and is comparable with that observed withClostridium botulinum neurotoxin. Finally, in vivo electrophysiology shows that these in vitroactions have biological relevance in that sensory transmission from nociceptive afferents through the spinal cord is significantly attenuated. These data demonstrate that the potent endopeptidase activity of clostridial neurotoxins can be selectively retargeted to cells of interest and that inhibition of release of neurotransmitters from a neuronal population of therapeutic relevance to the treatment of pain can be achieved.


Protein Expression and Purification | 2002

Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A.

John Chaddock; Michael H. Herbert; Roger Ling; Frances C.G. Alexander; Sarah J. Fooks; Dean F. Revell; Conrad P. Quinn; Clifford C. Shone; Keith Foster

Clostridium botulinum neurotoxin type A is a potently toxic protein of 150 kDa with specific endopeptidase activity for the SNARE protein SNAP-25. Proteolytic cleavage of BoNT/A with trypsin leads to removal of the C-terminal domain responsible for neuronal cell binding. Removal of this domain result in a catalytically active, non-cell-binding derivative termed LH(N)/A. We have developed a purification scheme to prepare LH(N)/A essentially free of contaminating BoNT/A. LH(N)/A prepared by this scheme retains full enzymatic activity, is stable in solution, and is of low toxicity as demonstrated in a mouse toxicity assay. In addition, LH(N)/A has minimal effect on release of neurotransmitter from a primary cell culture model. Both the mouse bioassay and in vitro release assay suggest BoNT/A is present at less than 1 in 10(6) molecules of LH(N)/A. This represents a significant improvement on previously reported figures for LH(N)/A, and also the light chain domain, previously purified from BoNT/A. To complement the preparation of LH(N)/A from holotoxin, DNA encoding LH(N)/A has been introduced into Escherichia coli to facilitate expression of recombinant product. Expression and purification parameters have been developed to enable isolation of soluble, stable endopeptidase with a toxicity profile enhanced on that of LH(N)/A purified from BoNT/A. The recombinant-derived material has been used to prepare antisera that neutralise a BoNT/A challenge. The production of essentially BoNT/A-free LH(N)/A by two different methods and the possibilities for exploitation are discussed.


Movement Disorders | 2004

Retargeted clostridial endopeptidases: inhibition of nociceptive neurotransmitter release in vitro, and antinociceptive activity in in vivo models of pain.

John Chaddock; John R. Purkiss; Frances Alexander; Sarah Doward; Sarah J. Fooks; Lorna M. Friis; Yper Hall; Elizabeth R. Kirby; Nicola Leeds; Hilary J. Moulsdale; Anthony H. Dickenson; G.Mark Green; Wahida Rahman; Rie Suzuki; Michael Duggan; Conrad P. Quinn; Clifford C. Shone; Keith Foster

Clostridial neurotoxins potently and specifically inhibit neurotransmitter release in defined cell types. Previously reported data have demonstrated that the catalytically active LHN endopeptidase fragment of botulinum neurotoxin type A (termed LHN/A) can be retargeted to a range of cell types in vitro to lead to inhibition of secretion of a range of transmitters. Here, we report the synthesis of endopeptidase conjugates with in vitro selectivity for nociceptive afferents compared to spinal neurons. Chemical conjugates prepared between Erythrina cristagalli lectin and LHN/A are assessed in vitro and in in vivo models of pain. Chemical conjugates prepared between E. cristagalli lectin and either natively sourced LHN/A, or recombinant LHN/A purified from Escherichia coli are assessed, and equivalence of the recombinant material is demonstrated. The duration of action of inhibition of neurotransmitter release by the conjugate in vitro is also assessed and is comparable to that observed with Clostridium botulinum neurotoxin. Selectivity of targeting and therapeutic potential have been confirmed by in vivo electrophysiology studies. Furthermore, the analgesic properties of the conjugate have been assessed in in vivo models of pain and extended duration effects observed. These data provide proof of principle for the concept of retargeted clostridial endopeptidases as novel analgesics.


Infection and Immunity | 2000

Inhibition of Vesicular Secretion in Both Neuronal and Nonneuronal Cells by a Retargeted Endopeptidase Derivative of Clostridium botulinum Neurotoxin Type A

John Chaddock; John R. Purkiss; Lorna M. Friis; Janice D. Broadbridge; Michael Duggan; Sarah J. Fooks; Clifford C. Shone; Conrad P. Quinn; Keith Foster

ABSTRACT Clostridial neurotoxins potently and specifically inhibit neurotransmitter release in defined cell types by a mechanism that involves cleavage of specific components of the vesicle docking/fusion complex, the SNARE complex. A derivative of the type A neurotoxin fromClostridium botulinum (termed LHN/A) that retains catalytic activity can be prepared by proteolysis. The LHN/A, however, lacks the putative native binding domain (HC) of the neurotoxin and is thus unable to bind to neurons and effect inhibition of neurotransmitter release. Here we report the chemical conjugation of LHN/A to an alternative cell-binding ligand, wheat germ agglutinin (WGA). When applied to a variety of cell lines, including those that are ordinarily resistant to the effects of neurotoxin, WGA-LHN/A conjugate potently inhibits secretory responses in those cells. Inhibition of release is demonstrated to be ligand mediated and dose dependent and to occur via a mechanism involving endopeptidase-dependent cleavage of the natural botulinum neurotoxin type A substrate. These data confirm that the function of the HC domain of C. botulinumneurotoxin type A is limited to binding to cell surface moieties. The data also demonstrate that the endopeptidase and translocation functions of the neurotoxin are effective in a range of cell types, including those of nonneuronal origin. These observations lead to the conclusion that a clostridial endopeptidase conjugate that can be used to investigate SNARE-mediated processes in a variety of cells has been successfully generated.


Neurotoxicity Research | 2006

Re-engineering the target specificity of clostridial neurotoxins - a route to novel therapeutics

Keith Foster; Emily J. Adams; Lyndsey Durose; Caroline J. Cruttwell; Elizabeth Marks; Clifford C. Shone; John Chaddock; Clare L. Cox; Charlotte Heaton; J. Mark Sutton; Jonathan Wayne; Frances Alexander; Duncan F. Rogers

The ability to chemically couple proteins to LHN-fragments of clostridial neurotoxins and create novel molecules with selectivity for cells other than the natural target cell of the native neurotoxin is well established. Such molecules are able to inhibit exocytosis in the target cell and have the potential to be therapeutically beneficial where secretion from a particular cell plays a causative role in a disease or medical condition. To date, these molecules have been produced by chemical coupling of the LHN-fragment and the targeting ligand. This is, however, not a suitable basis for producing pharmaceutical agents as the products are ill defined, difficult to control and heterogeneous. Also, the molecules described to date have targeted neuroendocrine cells that are susceptible to native neurotoxins, and therefore the benefit of creating a molecule with a novel targeting domain has been limited. In this paper, the production of a fully recombinant fusion protein from a recombinant gene encoding both the LHN-domain of a clostridial neurotoxin and a specific targeting domain is described, together with the ability of such recombinant fusion proteins to inhibit secretion from non-neuronal target cells. Specifically, a novel protein consisting of the LHN-domains of botulinum neurotoxin type C and epidermal growth factor (EGF) that is able to inhibit secretion of mucus from epithelial cells is reported. Such a molecule has the potential to prevent mucus hypersecretion in asthma and chronic obstructive pulmonary disease.


Growth Factors Journal | 2000

A Conjugate Composed of Nerve Growth Factor Coupled to a Non-toxic Derivative of Clostridium botulinum Neurotoxin Type A can Inhibit Neurotransmitter Release in Vitro

John Chaddock; John R. Purkiss; Michael Duggan; Conrad P. Quinn; Clifford C. Shone; Keith Foster

Abstract Nerve growth factor (NGF) receptor binding, internalisation and transportation of NGF has been identified as a potential route of delivery for other molecules. A derivative of Clostridium botulinum neurotoxin type A (LHN) that retains catalytic activity but has significantly reduced cell-binding capability has been prepared and chemically coupled to NGF. Intact clostridial neurotoxins potently inhibit neurotransmitter release at the neuromuscular junction by proteolysis of specific components of the vesicle docking/fusion complex. Here we report that the NGF-LHN/A conjugate, when applied to PC12 cells, significantly inhibited neurotransmitter release and cleaved the type A toxin substrate. This work represents the successful use of NGF as a targeting moiety for the delivery of a neurotoxin fragment.


Annual Review of Pharmacology and Toxicology | 2014

Engineered botulinum neurotoxins as new therapeutics.

Geoffrey Masuyer; John Chaddock; Keith Foster; K. Ravi Acharya

Botulinum neurotoxins (BoNTs) cause flaccid paralysis by inhibiting neurotransmission at cholinergic nerve terminals. Each BoNT consists of three domains that are essential for toxicity: the binding domain, the translocation domain, and the catalytic light-chain domain. BoNT modular architecture is associated with a multistep mechanism that culminates in the intracellular proteolysis of SNARE (soluble N-ethylmaleimide-sensitive-fusion-protein attachment protein receptor) proteins, which prevents synaptic vesicle exocytosis. As the most toxic proteins known, BoNTs have been extensively studied and are used as pharmaceutical agents to treat an increasing variety of disorders. This review summarizes the level of sophistication reached in BoNT engineering and highlights the diversity of approaches taken to utilize the modularity of the toxin. Improved efficiency and applicability have been achieved by direct mutagenesis and interserotype domain rearrangement. The scope of BoNT activity has been extended to nonneuronal cells and offers the basis for novel biomolecules in the treatment of secretion disorders.


Biochemical and Biophysical Research Communications | 2009

Crystal structure of a catalytically active, non-toxic endopeptidase derivative of Clostridium botulinum toxin A

Geoffrey Masuyer; Nethaji Thiyagarajan; Peter James; Philip Marks; John Chaddock; K. Ravi Acharya

Botulinum neurotoxins (BoNTs) modulate cholinergic nerve terminals to result in neurotransmitter blockade. BoNTs consists of catalytic (LC), translocation (Hn) and cell-binding domains (Hc). The binding function of the Hc domain is essential for BoNTs to bind the neuronal cell membrane, therefore, removal of the Hc domain results in a product that retains the endopeptidase activity of the LC but is non-toxic. Thus, a molecule consisting of LC and Hn domains of BoNTs, termed LHn, is a suitable molecule for engineering novel therapeutics. The structure of LHA at 2.6 A reported here provides an understanding of the structural implications and challenges of engineering therapeutic molecules that combine functional properties of LHn of BoNTs with specific ligand partners to target different cell types.


Protein Expression and Purification | 2003

Isolation of the gene and large-scale expression and purification of recombinant Erythrina cristagalli lectin

Patrick Stancombe; Frances C.G. Alexander; Roger Ling; Mary Matheson; Clifford C. Shone; John Chaddock

Using polymerase chain reaction, the coding sequence for Erythrina cristagalli lectin (ECL) has been cloned and expressed in Escherichia coli. The amplified DNA sequence of ECL is highly homologous to that previously reported for Erythrina corallodendron lectin (ECorL), confirming the absence of introns in the ECL gene. The polypeptide sequences of ECL and ECorL have been compared and five amino acids have been identified that differentiate the two proteins. Recombinant E. cristagalli lectin (recECL) was expressed in E. coli from a genomic clone encoding the mature E. cristagalli lectin gene. Constitutive expression localised recombinant protein in inclusion bodies, which were solubilised, and recECL, subsequently refolded and purified by lactose affinity chromatography. Significant advantages were observed for purification from inclusion bodies rather than from a clone optimised to express soluble protein. A large-scale purification scheme has been developed that can prepare functional recECL from inclusion bodies with a yield of 870 mg/l culture. By the range of characterisation methods employed in this study, it has been demonstrated that recECL is functionally equivalent to native ECL obtained from the E. cristagalli plant. In addition, characterisation of the binding of radiolabelled recECL to cultured dorsal root ganglia demonstrated that recECL binds to a single pool of receptors.

Collaboration


Dive into the John Chaddock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conrad P. Quinn

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Marks

Health Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Charles Penn

Health Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Wayne

Health Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge