Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Holbrey is active.

Publication


Featured researches published by John D. Holbrey.


Green Chemistry | 2003

Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate

Richard P. Swatloski; John D. Holbrey; Robin D. Rogers

1-Butyl-3-methylimidazolium fluoride hydrate has been identified crystallographically as a decomposition product created during purification of the hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. This highlights the need to treat ionic liquids much as one would any other research chemical with potentially hazardous properties, unknown toxicity and/or stability, particularly when searching for ‘green solvents’.


Biotechnology and Bioengineering | 2000

Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations.

S.G. Cull; John D. Holbrey; V. Vargas-Mora; Kenneth R. Seddon; Gary J. Lye

Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst.


Journal of Materials Chemistry | 1998

Ionic liquid crystals: hexafluorophosphate salts

Charles M. Gordon; John D. Holbrey; Alan R. Kennedy; Kenneth R. Seddon

A series of novel hexafluorophosphate salts, based on N,N′-dialkylimidazolium and substituted N-alkylpyridinium cations, display liquid crystalline behaviour at temperatures above their melting point. The temperature range over which liquid crystalline behaviour is observed increases markedly with increasing alkyl chain length. Alkyl substitution at the 3- and 4-positions on the pyridinium ring results in a decrease in the melting point compared with the equivalent unsubstituted salt, but also leads to a large decrease in the tendency towards liquid crystalline behaviour (or mesogenicity). The salts prepared are fully characterised using a wide variety of techniques, including NMR and IR spectroscopy, DSC, and single crystal X-ray diffraction in the case of 1-dodecyl-3-methylimidazolium hexafluorophosphate. The effect of preparing mixtures containing different proportions of two cations is also reported.


Journal of Chemical Physics | 2003

Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction

Christopher Hardacre; John D. Holbrey; S. E. Jane McMath; Daniel T. Bowron; Alan K. Soper

The model room temperature ionic liquid, 1,3-dimethylimidazolium chloride, has been studied by neutron diffraction for the first time. The diffraction data are used to derive a structural model of this liquid using Empirical Potential Structure Refinement. The model obtained indicates that significant charge ordering is present in the liquid salt and that the local order in this liquid closely resembles that found in the solid state. As in the crystal structure, hydrogen-bonding interactions between the ring hydrogens and the chloride dominate the structure. The model is compared with the data reported previously for both simple alkyl substituted imidazolium halides and binary mixtures with AlCl 3 .


Green Chemistry | 2003

Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei

Megan B. Turner; Scott K. Spear; Jonathan G. Huddleston; John D. Holbrey; Robin D. Rogers

The potential for performing cellulase-catalyzed reactions on cellulose dissolved in 1-butyl-3-methylimidazolium chloride ([bmim]Cl) has been investigated. We have carried out a systematic study on the irreversible solvent and ionic strength-induced inactivation and unfolding of cellulase from Trichoderma reesei (E.C. #3.2.1.4). Experiments, varying both cellulase and IL solvent concentrations, have indicated that [bmim]Cl, and several other ILs, as well as dimethylacetamide–LiCl (a well-known solvent system for cellulose), inactivate cellulase under these conditions. Despite cellulase inactivity, results obtained from this study led to valuable insights into the requirements necessary for enzyme activity in IL systems. Enzyme stability was determined during urea, NaCl, and [bmim]Cl-induced denaturation observed through fluorescence spectroscopy. Protein stability of a PEG-supported cellulase in [bmim]Cl solution was investigated and increased stability/activity of the PEG-supported cellulase in both the [bmim]Cl and citrate buffer solutions were detected.


Chemical Communications | 2003

Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304543a/

John D. Holbrey; W. Matthew Reichert; Mark Nieuwenhuyzen; Suzanne Johnson; Kenneth R. Seddon; Robin D. Rogers

Crystallization of 1-butyl-3-methylimidazolium chloride from mixed ionic liquid or ionic liquid–aromatic solution, and from the melt yields different crystalline polymorphs, the first direct evidence for inhibition of crystallization in ionic liquids by polymorphism.


Journal of Chemical Physics | 2010

Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids ([Cnmim][PF6], n=4, 6, and 8)

Christopher Hardacre; John D. Holbrey; Claire L. Mullan; Tristan G. A. Youngs; Daniel T. Bowron

The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases-leading to local mesoscopic inhomogeneity-with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.


Green Chemistry | 2008

Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency

John D. Holbrey; Ignacio López-Martin; Gadi Rothenberg; Kenneth R. Seddon; Guadalupe Silvero; Xi Zheng

Extraction of dibenzothiophene from dodecane using ionic liquids as the extracting phase has been investigated for a range of ionic liquids with varying cation classes (imidazolium, pyridinium, and pyrrolidinium) and a range of anion types using liquid–liquid partition studies and QSPR (quantitative structure–activity relationship) analysis. The partition ratio of dibenzothiophene to the ionic liquids showed a clear variation with cation class (dimethylpyridinium > methylpyridinium > pyridinium ≈ imidazolium ≈ pyrrolidinium), with much less significant variation with anion type. Polyaromatic quinolinium-based ionic liquids showed even greater extraction potential, but were compromised by higher melting points. For example, 1-butyl-6-methylquinolinium bis{(trifluoromethyl)sulfonyl}amide (mp 47 °C) extracted 90% of the available dibenzothiophene from dodecane at 60 °C.


Dalton Transactions | 2004

Crystal structures of imidazolium bis(trifluoromethanesulfonyl)imide ‘ionic liquid’ salts: the first organic salt with a cis-TFSI anion conformation

John D. Holbrey; W. Matthew Reichert; Robin D. Rogers

Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degrees C), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H. . .O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degrees C), the ions are discretely packed with only weak C-H. . .O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis(trifluoromethanesulfonyl)imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl)imide anions impart in ionic liquids.


Chemical Communications | 2011

Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes

Héctor Rodríguez; Gabriela Gurau; John D. Holbrey; Robin D. Rogers

Mechanistic analysis of the reaction between elemental sulfur or selenium and 1,3-dialkylimidazolium acetate ionic liquids, in the absence of an external base or solvent, affords evidence for the equilibrium presence of carbene species in these ionic liquids. It demonstrates the potential to control, through anion selection, the concentration of carbene in stable ionic liquids.

Collaboration


Dive into the John D. Holbrey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth R. Seddon

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge