Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Lambris is active.

Publication


Featured researches published by John D. Lambris.


Cell | 2007

The Classical Complement Cascade Mediates CNS Synapse Elimination

Beth Stevens; Nicola J. Allen; Luis E. Vazquez; Gareth R. Howell; Karen S. Christopherson; Navid Nouri; Kristina D. Micheva; Adrienne K. Mehalow; Andrew D. Huberman; Benjamin K. Stafford; Alexander Sher; Alan Litke; John D. Lambris; Stephen J. Smith; Simon W. M. John; Ben A. Barres

During development, the formation of mature neural circuits requires the selective elimination of inappropriate synaptic connections. Here we show that C1q, the initiating protein in the classical complement cascade, is expressed by postnatal neurons in response to immature astrocytes and is localized to synapses throughout the postnatal CNS and retina. Mice deficient in complement protein C1q or the downstream complement protein C3 exhibit large sustained defects in CNS synapse elimination, as shown by the failure of anatomical refinement of retinogeniculate connections and the retention of excess retinal innervation by lateral geniculate neurons. Neuronal C1q is normally downregulated in the adult CNS; however, in a mouse model of glaucoma, C1q becomes upregulated and synaptically relocalized in the adult retina early in the disease. These findings support a model in which unwanted synapses are tagged by complement for elimination and suggest that complement-mediated synapse elimination may become aberrantly reactivated in neurodegenerative disease.


Nature Medicine | 2006

Generation of C5a in the absence of C3: a new complement activation pathway.

Markus Huber-Lang; J. Vidya Sarma; Firas S. Zetoune; Daniel Rittirsch; Thomas A. Neff; Stephanie R. McGuire; John D. Lambris; Roscoe L. Warner; Michael A. Flierl; Laszlo M. Hoesel; Florian Gebhard; John G. Younger; Scott M. Drouin; Rick A. Wetsel; Peter A. Ward

Complement-mediated tissue injury in humans occurs upon deposition of immune complexes, such as in autoimmune diseases and acute respiratory distress syndrome. Acute lung inflammatory injury in wild-type and C3−/− mice after deposition of IgG immune complexes was of equivalent intensity and was C5a dependent, but injury was greatly attenuated in Hc−/− mice (Hc encodes C5). Injury in lungs of C3−/− mice and C5a levels in bronchoalveolar lavage (BAL) fluids from these mice were greatly reduced in the presence of antithrombin III (ATIII) or hirudin but were not reduced in similarly treated C3+/+ mice. Plasma from C3−/− mice contained threefold higher levels of thrombin activity compared to plasma from C3+/+ mice. There were higher levels of F2 mRNA (encoding prothrombin) as well as prothrombin and thrombin protein in liver of C3−/− mice compared to C3+/+ mice. A potent solid-phase C5 convertase was generated using plasma from either C3+/+ or C3−/− mice. Human C5 incubated with thrombin generated C5a that was biologically active. These data suggest that, in the genetic absence of C3, thrombin substitutes for the C3-dependent C5 convertase. This linkage between the complement and coagulation pathways may represent a new pathway of complement activation.


Nature Reviews Microbiology | 2008

Complement evasion by human pathogens

John D. Lambris; Daniel Ricklin; Brian V. Geisbrecht

The human immune system has developed an elaborate network of cascades for dealing with microbial intruders. Owing to its ability to rapidly recognize and eliminate microorganisms, the complement system is an essential and efficient component of this machinery. However, many pathogenic organisms have found ways to escape the attack of complement through a range of different mechanisms. Recent discoveries in this field have provided important insights into these processes on a molecular level. These vital developments could augment our knowledge of the pathology and treatment of infectious and inflammatory diseases.


Nature Biotechnology | 2007

Complement-targeted therapeutics

Daniel Ricklin; John D. Lambris

The complement system is a central component of innate immunity and bridges the innate to the adaptive immune response. However, it can also turn its destructive capabilities against host cells and is involved in numerous diseases and pathological conditions. Modulation of the complement system has been recognized as a promising strategy in drug discovery, and a large number of therapeutic modalities have been developed. However, successful marketing of complement-targeted drugs has proved to be more difficult than initially expected, and many strategies have been discontinued. The US Food and Drug Administrations approval of the first complement-specific drug, an antibody against complement component C5 (eculizumab; Soliris), in March 2007, was a long-awaited breakthrough in the field. Approval of eculizumab validates the complement system as therapeutic target and might facilitate clinical development of other promising drug candidates.


Nature Immunology | 2008

Modulation of the antitumor immune response by complement

Maciej M. Markiewski; Robert A. DeAngelis; Fabian Benencia; Salome K. Ricklin-Lichtsteiner; Anna Koutoulaki; Craig Gerard; George Coukos; John D. Lambris

The involvement of complement-activation products in promoting tumor growth has not yet been recognized. Here we show that the generation of complement C5a in a tumor microenvironment enhanced tumor growth by suppressing the antitumor CD8+ T cell–mediated response. This suppression was associated with the recruitment of myeloid-derived suppressor cells into tumors and augmentation of their T cell–directed suppressive abilities. Amplification of the suppressive capacity of myeloid-derived suppressor cells by C5a occurred through regulation of the production of reactive oxygen and nitrogen species. Pharmacological blockade of the C5a receptor considerably impaired tumor growth to a degree similar to the effect produced by the anticancer drug paclitaxel. Thus, our study demonstrates a therapeutic function for complement inhibition in the treatment of cancer.


Immunological Reviews | 2001

Structure and biology of complement protein C3, a connecting link between innate and acquired immunity.

Arvind Sahu; John D. Lambris

Complement protein C3 is a central molecule in the complement system whose activation is essential for all the important functions performed by this system. After four decades of research it is now well established that C3 functions like a double‐edged sword: on the one hand it promotes phagocytosis, supports local inflammatory responses against pathogens, and instructs the adaptive immune response to select the appropriate antigens for a humoral response; on the other hand its unregulated activation leads to host cell damage. In addition, its interactions with the proteins of foreign pathogens may provide a mechanism by which these microorganisms evade complement attack. Therefore, a clear knowledge of the molecule and its interactions at the molecular level not only may allow the rational design of molecular adjuvants but may also lead to the development of complement inhibitors and new therapeutic agents against infectious diseases.


Journal of Immunology | 2010

Molecular Intercommunication between the Complement and Coagulation Systems

Umme Amara; Michael A. Flierl; Daniel Rittirsch; Andreas Klos; Hui Chen; Barbara Acker; Uwe B. Brückner; Bo Nilsson; Florian Gebhard; John D. Lambris; Markus Huber-Lang

The complement system as well as the coagulation system has fundamental clinical implications in the context of life-threatening tissue injury and inflammation. Associations between both cascades have been proposed, but the precise molecular mechanisms remain unknown. The current study reports multiple links for various factors of the coagulation and fibrinolysis cascades with the central complement components C3 and C5 in vitro and ex vivo. Thrombin, human coagulation factors (F) XIa, Xa, and IXa, and plasmin were all found to effectively cleave C3 and C5. Mass spectrometric analyses identified the cleavage products as C3a and C5a, displaying identical molecular weights as the native anaphylatoxins C3a and C5a. Cleavage products also exhibited robust chemoattraction of human mast cells and neutrophils, respectively. Enzymatic activity for C3 cleavage by the investigated clotting and fibrinolysis factors is defined in the following order: FXa > plasmin > thrombin > FIXa > FXIa > control. Furthermore, FXa-induced cleavage of C3 was significantly suppressed in the presence of the selective FXa inhibitors fondaparinux and enoxaparin in a concentration-dependent manner. Addition of FXa to human serum or plasma activated complement ex vivo, represented by the generation of C3a, C5a, and the terminal complement complex, and decreased complement hemolytic serum activity that defines exact serum concentration that results in complement-mediated lysis of 50% of sensitized sheep erythrocytes. Furthermore, in plasma from patients with multiple injuries (n = 12), a very early appearance and correlation of coagulation (thrombin–antithrombin complexes) and the complement activation product C5a was found. The present data suggest that coagulation/fibrinolysis proteases may act as natural C3 and C5 convertases, generating biologically active anaphylatoxins, linking both cascades via multiple direct interactions in terms of a complex serine protease system.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice

Tony Wyss-Coray; Fengrong Yan; Amy Lin; John D. Lambris; Jessy J. Alexander; Richard J. Quigg; Eliezer Masliah

Abnormal accumulation of β-amyloid (Aβ) in Alzheimers disease (AD) is associated with prominent brain inflammation. Whereas earlier studies concluded that this inflammation is detrimental, more recent animal data suggest that at least some inflammatory processes may be beneficial and promote Aβ clearance. Consistent with these observations, overproduction of transforming growth factor (TGF)-β1 resulted in a vigorous microglial activation that was accompanied by at least a 50% reduction in Aβ accumulation in human amyloid precursor protein (hAPP) transgenic mice. In a search for inflammatory mediators associated with this reduced pathology, we found that brain levels of C3, the central component of complement and a key inflammatory protein activated in AD, were markedly higher in hAPP/TGF-β1 mice than in hAPP mice. To assess the importance of complement in the pathogenesis of AD-like disease in mice, we inhibited C3 activation by expressing soluble complement receptor-related protein y (sCrry), a complement inhibitor, in the brains of hAPP mice. Aβ deposition was 2- to 3-fold higher in 1-year-old hAPP/sCrry mice than in age-matched hAPP mice and was accompanied by a prominent accumulation of degenerating neurons. These results indicate that complement activation products can protect against Aβ-induced neurotoxicity and may reduce the accumulation or promote the clearance of amyloid and degenerating neurons. These findings provide evidence for a role of complement and innate immune responses in AD-like disease in mice and support the concept that certain inflammatory defense mechanisms in the brain may be beneficial in neurodegenerative disease.


Journal of Experimental Medicine | 2003

The Proinflammatory Mediators C3a and C5a Are Essential for Liver Regeneration

Christoph W. Strey; Maciej M. Markiewski; Dimitrios Mastellos; Ruxandra Tudoran; Lynn A. Spruce; Linda E. Greenbaum; John D. Lambris

Complement has been implicated in liver repair after toxic injury. Here, we demonstrate that complement components are essential for liver regeneration, and mediate their effect by interacting with key signaling networks that promote hepatocyte proliferation. C3- or C5-deficient mice exhibited high mortality, parenchymal damage, and impaired liver regeneration after partial hepatectomy. Mice with dual C3 and C5 deficiency had a more exacerbated phenotype that was reversed by combined C3a and C5a reconstitution. Interception of C5a receptor signaling resulted in suppression of IL-6/TNFα induction and lack of C3 and C5a receptor stimulation attenuated nuclear factor–κB/STAT-3 activation after hepatectomy. These data indicate that C3a and C5a, two potent inflammatory mediators of the innate immune response, contribute essentially to the early priming stages of hepatocyte regeneration.


Journal of The American Society of Nephrology | 2005

Membranoproliferative Glomerulonephritis Type II (Dense Deposit Disease): An Update

Gerald B. Appel; H. Terence Cook; Gregory S. Hageman; J. Charles Jennette; Michael Kashgarian; Michael Kirschfink; John D. Lambris; Lynne D. Lanning; Hans U. Lutz; Seppo Meri; Noel R. Rose; David J. Salant; Sanjeev Sethi; Richard J.H. Smith; William E. Smoyer; Hope F. Tully; Sean P. Tully; Patrick D. Walker; Michael J. Welsh; Reinhard Würzner; Peter F. Zipfel

Membranoproliferative glomerulonephritis type II (MPGN II) is a rare disease characterized by the deposition of abnormal electron-dense material within the glomerular basement membrane of the kidney and often within Bruchs membrane in the eye. The diagnosis is made in most patients between the ages of 5 and 15 yr, and within 10 yr, approximately half progress to end-stage renal disease, occasionally with the late comorbidity of visual impairment. The pathophysiologic basis of MPGN II is associated with the uncontrolled systemic activation of the alternative pathway (AP) of the complement cascade. In most patients, loss of complement regulation is caused by C3 nephritic factor, an autoantibody directed against the C3 convertase of the AP, but in some patients, mutations in the factor H gene have been identified. For the latter patients, plasma replacement therapy prevents renal failure, but for the majority of patients, there is no proven effective treatment. The disease recurs in virtually all renal allografts, and a high percentage of these ultimately fail. The development of molecular diagnostic tools and new therapies directed at controlling the AP of the complement cascade either locally in the kidney or at the systemic level may lead to effective treatments for MPGN II.

Collaboration


Dive into the John D. Lambris's collaboration.

Top Co-Authors

Avatar

Daniel Ricklin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgia Sfyroera

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Edimara S. Reis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Sahu

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maciej M. Markiewski

Texas Tech University Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge