Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Noti is active.

Publication


Featured researches published by John D. Noti.


Clinical Infectious Diseases | 2012

Detection of Infectious Influenza Virus in Cough Aerosols Generated in a Simulated Patient Examination Room

John D. Noti; William G. Lindsley; Francoise M. Blachere; Gang Cao; Michael L. Kashon; Robert E. Thewlis; Cynthia M. McMillen; William P. King; Jonathan V. Szalajda; Donald H. Beezhold

BACKGROUND The potential for aerosol transmission of infectious influenza virus (ie, in healthcare facilities) is controversial. We constructed a simulated patient examination room that contained coughing and breathing manikins to determine whether coughed influenza was infectious and assessed the effectiveness of an N95 respirator and surgical mask in blocking transmission. METHODS National Institute for Occupational Safety and Health aerosol samplers collected size-fractionated aerosols for 60 minutes at the mouth of the breathing manikin, beside the mouth, and at 3 other locations in the room. Total recovered virus was quantitated by quantitative polymerase chain reaction and infectivity was determined by the viral plaque assay and an enhanced infectivity assay. RESULTS Infectious influenza was recovered in all aerosol fractions (5.0% in >4 μm aerodynamic diameter, 75.5% in 1-4 μm, and 19.5% in <1 μm; n = 5). Tightly sealing a mask to the face blocked entry of 94.5% of total virus and 94.8% of infectious virus (n = 3). A tightly sealed respirator blocked 99.8% of total virus and 99.6% of infectious virus (n = 3). A poorly fitted respirator blocked 64.5% of total virus and 66.5% of infectious virus (n = 3). A mask documented to be loosely fitting by a PortaCount fit tester, to simulate how masks are worn by healthcare workers, blocked entry of 68.5% of total virus and 56.6% of infectious virus (n = 2). CONCLUSIONS These results support a role for aerosol transmission and represent the first reported laboratory study of the efficacy of masks and respirators in blocking inhalation of influenza in aerosols. The results indicate that a poorly fitted respirator performs no better than a loosely fitting mask.


PLOS ONE | 2013

High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs

John D. Noti; Francoise M. Blachere; Cynthia M. McMillen; William G. Lindsley; Michael L. Kashon; Denzil R. Slaughter; Donald H. Beezhold

Background The role of relative humidity in the aerosol transmission of influenza was examined in a simulated examination room containing coughing and breathing manikins. Methods Nebulized influenza was coughed into the examination room and Bioaerosol samplers collected size-fractionated aerosols (<1 µM, 1–4 µM, and >4 µM aerodynamic diameters) adjacent to the breathing manikin’s mouth and also at other locations within the room. At constant temperature, the RH was varied from 7–73% and infectivity was assessed by the viral plaque assay. Results Total virus collected for 60 minutes retained 70.6–77.3% infectivity at relative humidity ≤23% but only 14.6–22.2% at relative humidity ≥43%. Analysis of the individual aerosol fractions showed a similar loss in infectivity among the fractions. Time interval analysis showed that most of the loss in infectivity within each aerosol fraction occurred 0–15 minutes after coughing. Thereafter, losses in infectivity continued up to 5 hours after coughing, however, the rate of decline at 45% relative humidity was not statistically different than that at 20% regardless of the aerosol fraction analyzed. Conclusion At low relative humidity, influenza retains maximal infectivity and inactivation of the virus at higher relative humidity occurs rapidly after coughing. Although virus carried on aerosol particles <4 µM have the potential for remaining suspended in air currents longer and traveling further distances than those on larger particles, their rapid inactivation at high humidity tempers this concern. Maintaining indoor relative humidity >40% will significantly reduce the infectivity of aerosolized virus.


Journal of Virological Methods | 2011

Enhanced detection of infectious airborne influenza virus

Francoise M. Blachere; Gang Cao; William G. Lindsley; John D. Noti; Donald H. Beezhold

Current screening methodologies for detecting infectious airborne influenza virus are limited and lack sensitivity. To increase the sensitivity for detecting infectious influenza virus in an aerosol sample, the viral replication assay was developed. With this assay, influenza virus is first amplified by replication in Madin-Darby canine kidney (MDCK) cells followed by detection with quantitative PCR (qPCR). Spanning a 20-h replication period, matrix gene expression levels from infectious virus were measured at several time points using qPCR and found to exponentially increase. Compared with the traditional culture-based viral plaque assay, the viral replication assay resulted in a 4.6 × 10(5) fold increase in influenza virus detection. Furthermore, viral replication assay results were obtained in half the time of the viral plaque assay. To demonstrate that the viral replication assay is capable of detecting airborne influenza virus, dilute preparations of strain A/WS/33 were loaded into a nebulizer, aerosolized within a calm-air settling chamber and subsequently collected using NIOSH Two-Stage Bioaerosol Samplers. At the most diluted concentration corresponding to a chicken embryo infectious dose 50% endpoint (CEID(50)) of 2.8E+02/ml, the viral replication assay was able to detect infectious influenza virus that was otherwise undetectable by viral plaque assay. The results obtained demonstrate that the viral replication assay is highly sensitive at detecting infectious influenza virus from aerosol samples.


Journal of Occupational and Environmental Hygiene | 2015

Viable Influenza A Virus in Airborne Particles from Human Coughs

William G. Lindsley; John D. Noti; Francoise M. Blachere; Robert E. Thewlis; Stephen B. Martin; Sreekumar Othumpangat; Bahar Noorbakhsh; William T. Goldsmith; Abhishek Vishnu; Jan E. Palmer; Karen Clark; Donald H. Beezhold

Patients with influenza release aerosol particles containing the virus into their environment. However, the importance of airborne transmission in the spread of influenza is unclear, in part because of a lack of information about the infectivity of the airborne virus. The purpose of this study was to determine the amount of viable influenza A virus that was expelled by patients in aerosol particles while coughing. Sixty-four symptomatic adult volunteer outpatients were asked to cough 6 times into a cough aerosol collection system. Seventeen of these participants tested positive for influenza A virus by viral plaque assay (VPA) with confirmation by viral replication assay (VRA). Viable influenza A virus was detected in the cough aerosol particles from 7 of these 17 test subjects (41%). Viable influenza A virus was found in the smallest particle size fraction (0.3 μm to 8 μm), with a mean of 142 plaque-forming units (SD 215) expelled during the 6 coughs in particles of this size. These results suggest that a significant proportion of patients with influenza A release small airborne particles containing viable virus into the environment. Although the amounts of influenza A detected in cough aerosol particles during our experiments were relatively low, larger quantities could be expelled by influenza patients during a pandemic when illnesses would be more severe. Our findings support the idea that airborne infectious particles could play an important role in the spread of influenza.


Journal of Environmental Monitoring | 2011

Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler

Gang Cao; John D. Noti; Francoise M. Blachere; William G. Lindsley; D.H. Beezhold

A unique two-stage cyclone bioaerosol sampler has been developed at NIOSH that can separate aerosols into three size fractions. The ability of this sampler to collect infectious airborne viruses from a calm-air chamber loaded with influenza A virus was tested. The samplers efficiency at collecting aerosolized viral particles from a calm-air chamber is essentially the same as that from the high performance SKC BioSampler that collects un-fractionated particles directly into a liquid media (2.4 × 10(4) total viral particles per liter of sampled air (TVP/L) versus 2.6 × 10(4) TVP/L, respectively, after 15 min) and the efficiency is relatively constant over collection times of 15, 30 and 60 min. Approximately 34% of the aerosolized infectious virus collected after 15 min with the NIOSH bioaerosol sampler remained infectious, and infectious virus was found in all three size fractions. After 60 min of sampling, the infectious virus/liter air found in the NIOSH bioaerosol sampler was 15% of that found in the SKC BioSampler. This preservation of infectivity by the NIOSH bioaerosol sampler was maintained even when the initial infectivity prior to aerosolization was as low as 0.06%. The utility of the NIOSH bioaerosol sampler was further extended by incorporating an enhanced infectivity detection methodology developed in our laboratory, the viral replication assay, which amplified the infectious virus making it more readily detectable.


Virology | 2014

Lung epithelial cells resist influenza A infection by inducing the expression of cytochrome c oxidase VIc which is modulated by miRNA 4276

Sreekumar Othumpangat; John D. Noti; Donald H. Beezhold

Influenza virus infection induces several changes in host miRNA profile, host cell death and tissue damage. Cytochrome c is a regulator of the intrinsic apoptotic pathway and is altered during viral infections. Within the first 3h of infection with influenza virus, significant down-regulation of hsa-miRNA-4276 (miRNA-4276) is followed by a 2-fold increase in cytochrome c oxidase VIC (COX6C) mRNA was found to occur in human alveolar and bronchial epithelial cells. Expression of caspase-9 also increased within the first 3h of infection, but subsequently decreased. Modulation of miR-4276 using mimic and inhibitor oligonucleotides showed significant down-regulation or up-regulation, respectively, of COX6C expression. Our data suggests that on initial exposure to influenza virus, host cells upregulate COX6C mRNA expression through silencing miR-4276 and repressed viral replication by inducing the apoptotic protein caspase-9. Taken together, these data suggest that miR-4276 may be an important regulator of the early stages of infection by influenza.


Virology | 2016

ICAM-1 regulates the survival of influenza virus in lung epithelial cells during the early stages of infection.

Sreekumar Othumpangat; John D. Noti; Cynthia M. McMillen; Donald H. Beezhold

Intercellular cell adhesion molecule-1 (ICAM-1) is an inducible cell surface glycoprotein that is expressed on many cell types. Influenza virus infection enhanced ICAM-1 expression and messenger RNA levels. Human bronchial epithelial cells (HBEpC) and nasal epithelial cells, on exposure to different strains of influenza virus (H1N1, H3N2, and H9N1) showed significant increase in ICAM-1 gene expression (p<0.001) along with the ICAM-1 protein levels (surface and secreted). Depleting ICAM-1 in HBEpC with ICAM-1 siRNA and subsequently infecting with H1N1 showed increased viral copy numbers. Influenza virus infection in HBEpC resulted in up-regulation of NF-ĸB protein and the lack of ICAM-1 decreased NF-ĸB activity in NF-ĸB luciferase reporter assay. Addition of exogenous IL-1β to HBEpC induced the ICAM-1 expression and decreased matrix gene copy number. Taken together, HBEpC induced ICAM-1 plays a key role in modulating the influenza virus survival possibly through the NF-ĸB pathway.


Virology | 2013

Expression of non-structural-1A binding protein in lung epithelial cells is modulated by miRNA-548an on exposure to influenza A virus.

Sreekumar Othumpangat; John D. Noti; Francoise M. Blachere; Donald H. Beezhold

Understanding the host response to influenza A virus infection is essential for developing intervention approaches. We show that infection of human alveolar epithelial cells and human bronchial epithelial cells with influenza A for 3h resulted in down-regulation of host hsa-miRNA-548an (miRNA-548an) which triggered the overexpression of influenza non-structural-1A binding protein (IVNS1ABP, herein referred to as NS1ABP). Reduced NS1ABP mRNA and NS1ABP protein expression after transfection of miRNA-548an mimic or increased NS1ABP mRNA and NS1ABP protein expression after transfection of miRNA-548an inhibitor provided evidence that miRNA-548an is involved in the regulation of NS1ABP. Transfection of cells with inhibitor led to reduced apoptosis of infected cells while transfection of mimic led to increased apoptosis and reduced influenza copy number suggesting that NS1ABP has a role in viral maintenance. Thus, miRNA-548an may be an important target in controlling the early stage infection of influenza A.


Influenza and Other Respiratory Viruses | 2016

Viable influenza A virus in airborne particles expelled during coughs versus exhalations

William G. Lindsley; Francoise M. Blachere; Donald H. Beezhold; Robert E. Thewlis; Bahar Noorbakhsh; Sreekumar Othumpangat; William T. Goldsmith; Cynthia M. McMillen; Michael E. Andrew; Carmen N. Burrell; John D. Noti

To prepare for a possible influenza pandemic, a better understanding of the potential for the airborne transmission of influenza from person to person is needed.


Risk Analysis | 2014

Validation and application of models to predict facemask influenza contamination in healthcare settings.

Edward M. Fisher; John D. Noti; William G. Lindsley; Francoise M. Blachere; Ronald E. Shaffer

Facemasks are part of the hierarchy of interventions used to reduce the transmission of respiratory pathogens by providing a barrier. Two types of facemasks used by healthcare workers are N95 filtering facepiece respirators (FFRs) and surgical masks (SMs). These can become contaminated with respiratory pathogens during use, thus serving as potential sources for transmission. However, because of the lack of field studies, the hazard associated with pathogen-exposed facemasks is unknown. A mathematical model was used to calculate the potential influenza contamination of facemasks from aerosol sources in various exposure scenarios. The aerosol model was validated with data from previous laboratory studies using facemasks mounted on headforms in a simulated healthcare room. The model was then used to estimate facemask contamination levels in three scenarios generated with input parameters from the literature. A second model estimated facemask contamination from a cough. It was determined that contamination levels from a single cough (≈19 viruses) were much less than likely levels from aerosols (4,473 viruses on FFRs and 3,476 viruses on SMs). For aerosol contamination, a range of input values from the literature resulted in wide variation in estimated facemask contamination levels (13-202,549 viruses), depending on the values selected. Overall, these models and estimates for facemask contamination levels can be used to inform infection control practice and research related to the development of better facemasks, to characterize airborne contamination levels, and to assist in assessment of risk from reaerosolization and fomite transfer because of handling and reuse of contaminated facemasks.

Collaboration


Dive into the John D. Noti's collaboration.

Top Co-Authors

Avatar

Donald H. Beezhold

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

William G. Lindsley

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Sreekumar Othumpangat

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Francoise M. Blachere

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Robert E. Thewlis

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahar Noorbakhsh

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Edward M. Fisher

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Ronald E. Shaffer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Stephen B. Martin

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge