Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John D. Westbrook is active.

Publication


Featured researches published by John D. Westbrook.


Acta Crystallographica Section D-biological Crystallography | 2002

The Protein Data Bank

Helen M. Berman; Tammy Battistuz; Talapady N. Bhat; Wolfgang F. Bluhm; Philip E. Bourne; Kyle Burkhardt; Zukang Feng; Gary L. Gilliland; Lisa Iype; Shri Jain; Phoebe Fagan; Jessica Marvin; David Padilla; Veerasamy Ravichandran; Bohdan Schneider; Narmada Thanki; Helge Weissig; John D. Westbrook; Christine Zardecki

The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.


Nature Structural & Molecular Biology | 2000

The Protein Data Bank and the Challenge of Structural Genomics

Helen M. Berman; Talapady N. Bhat; Philip E. Bourne; Zukang Feng; Gary L. Gilliland; Helge Weissig; John D. Westbrook

The PDB has created systems for the processing, exchange, query, and distribution of data that will enable many aspects of high throughput structural genomics.


Nucleic Acids Research | 2003

The Protein Data Bank and structural genomics

John D. Westbrook; Zukang Feng; Li Chen; Huanwang Yang; Helen M. Berman

The Protein Data Bank (PDB; http://www.pdb.org/) continues to be actively involved in various aspects of the informatics of structural genomics projects--developing and maintaining the Target Registration Database (TargetDB), organizing data dictionaries that will define the specification for the exchange and deposition of data with the structural genomics centers and creating software tools to capture data from standard structure determination applications.


Nucleic Acids Research | 2004

The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema

Nita Deshpande; Kenneth J. Addess; Wolfgang F. Bluhm; Jeffrey C. Merino-Ott; Wayne Townsend-Merino; Qing-qing Zhang; Charlie Knezevich; Lie-jun Xie; Li Chen; Zukang Feng; Rachel Kramer Green; Judith L. Flippen-Anderson; John D. Westbrook; Helen M. Berman; Philip E. Bourne

The Protein Data Bank (PDB) is the central worldwide repository for three-dimensional (3D) structure data of biological macromolecules. The Research Collaboratory for Structural Bioinformatics (RCSB) has completely redesigned its resource for the distribution and query of 3D structure data. The re-engineered site is currently in public beta test at http://pdbbeta.rcsb.org. The new site expands the functionality of the existing site by providing structure data in greater detail and uniformity, improved query and enhanced analysis tools. A new key feature is the integration and searchability of data from over 20 other sources covering genomic, proteomic and disease relationships. The current capabilities of the re-engineered site, which will become the RCSB production site at http://www.pdb.org in late 2005, are described.


Nucleic Acids Research | 2015

The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

Peter W. Rose; Andreas Prlić; Chunxiao Bi; Wolfgang F. Bluhm; Cole Christie; Shuchismita Dutta; Rachel Kramer Green; David S. Goodsell; John D. Westbrook; Jesse Woo; Jasmine Young; Christine Zardecki; Helen M. Berman; Philip E. Bourne; Stephen K. Burley

The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine.


Nucleic Acids Research | 2002

The Protein Data Bank: unifying the archive

John D. Westbrook; Zukang Feng; Shri Jain; Talapady N. Bhat; Narmada Thanki; Veerasamy Ravichandran; Gary L. Gilliland; Wolfgang F. Bluhm; Helge Weissig; Douglas S. Greer; Philip E. Bourne; Helen M. Berman

The Protein Data Bank (PDB; http://www.pdb.org/) is the single worldwide archive of structural data of biological macromolecules. This paper describes the progress that has been made in validating all data in the PDB archive and in releasing a uniform archive for the community. We have now produced a collection of mmCIF data files for the PDB archive (ftp://beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/). A utility application that converts the mmCIF data files to the PDB format (called CIFTr) has also been released to provide support for existing software.


Nucleic Acids Research | 2006

The RCSB PDB information portal for structural genomics

Andrei Kouranov; Lei Xie; Joanna de la Cruz; Li Chen; John D. Westbrook; Philip E. Bourne; Helen M. Berman

The RCSB Protein Data Bank (PDB) offers online tools, summary reports and target information related to the worldwide structural genomics initiatives from its portal at . There are currently three components to this site: Structural Genomics Initiatives contains information and links on each structural genomics site, including progress reports, target lists, target status, targets in the PDB and level of sequence redundancy; Targets provides combined target information, protocols and other data associated with protein structure determination; and Structures offers an assessment of the progress of structural genomics based on the functional coverage of the human genome by PDB structures, structural genomics targets and homology models. Functional coverage can be examined according to enzyme classification, gene ontology (biological process, cell component and molecular function) and disease.


Structure | 2012

Outcome of the first electron microscopy validation task force meeting

Richard Henderson; Andrej Sali; Matthew L. Baker; Bridget Carragher; Batsal Devkota; Kenneth H. Downing; Edward H. Egelman; Zukang Feng; Joachim Frank; Nikolaus Grigorieff; Wen Jiang; Steven J. Ludtke; Ohad Medalia; Pawel A. Penczek; Peter B. Rosenthal; Michael G. Rossmann; Michael F. Schmid; Gunnar F. Schröder; Alasdair C. Steven; David L. Stokes; John D. Westbrook; Willy Wriggers; Huanwang Yang; Jasmine Young; Helen M. Berman; Wah Chiu; Gerard J. Kleywegt; Catherine L. Lawson

This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.


Nucleic Acids Research | 2003

Tools for the automatic identification and classification of RNA base pairs

Huanwang Yang; Fabrice Jossinet; Neocles B. Leontis; Li Chen; John D. Westbrook; Helen M. Berman; Eric Westhof

Three programs have been developed to aid in the classification and visualization of RNA structure. BPViewer provides a web interface for displaying three-dimensional (3D) coordinates of individual base pairs or base pair collections. A web server, RNAview, automatically identifies and classifies the types of base pairs that are formed in nucleic acid structures by various combinations of the three edges, Watson-Crick, Hoogsteen and the Sugar edge. RNAView produces two-dimensional (2D) diagrams of secondary and tertiary structure in either Postscript, VRML or RNAML formats. The application RNAMLview can be used to rearrange various parts of the RNAView 2D diagram to generate a standard representation (like the cloverleaf structure of tRNAs) or any layout desired by the user. A 2D diagram can be rapidly reformatted using RNAMLview since all the parts of RNA (like helices and single strands) are dynamically linked while moving the selected parts. With the base pair annotation and the 2D graphic display, RNA motifs are rapidly identified and classified. A survey has been carried out for 41 unique structures selected from the NDB database. The statistics for the occurrence of each edge and of each of the 12 bp families are given for the combinations of the four bases: A, G, U and C. The program also allows for visualization of the base pair interactions by using a symbolic convention previously proposed for base pairs. The web servers for BPViewer and RNAview are available at http://ndbserver.rutgers.edu/services/. The application RNAMLview can also be downloaded from this site. The 2D diagrams produced by RNAview are available for RNA structures in the Nucleic Acid Database (NDB) at http://ndbserver.rutgers.edu/atlas/.


Acta Crystallographica Section D-biological Crystallography | 2004

Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank

Huanwang Yang; Vladimir Guranovic; Shuchismita Dutta; Zukang Feng; Helen M. Berman; John D. Westbrook

The RCSB Protein Data Bank (PDB) has a number of options for deposition of structural data and has developed software tools to facilitate the process. In addition to ADIT and the PDB Validation Suite, a new software application, pdb_extract, has been designed to promote automatic data deposition of structures solved by X-ray diffraction. The pdb_extract software can extract information about data reduction, phasing, molecular replacement, density modification and refinement from the output files produced by many X-ray crystallographic applications. The options, procedures and tools for accurate and automated PDB data deposition are described here.

Collaboration


Dive into the John D. Westbrook's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip E. Bourne

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torsten Schwede

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Markley

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge