Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Doorbar is active.

Publication


Featured researches published by John Doorbar.


Clinical Science | 2006

Molecular biology of human papillomavirus infection and cervical cancer

John Doorbar

HPVs (human papillomaviruses) infect epithelial cells and cause a variety of lesions ranging from common warts/verrucas to cervical neoplasia and cancer. Over 100 different HPV types have been identified so far, with a subset of these being classified as high risk. High-risk HPV DNA is found in almost all cervical cancers (>99.7%), with HPV16 being the most prevalent type in both low-grade disease and cervical neoplasia. Productive infection by high-risk HPV types is manifest as cervical flat warts or condyloma that shed infectious virions from their surface. Viral genomes are maintained as episomes in the basal layer, with viral gene expression being tightly controlled as the infected cells move towards the epithelial surface. The pattern of viral gene expression in low-grade cervical lesions resembles that seen in productive warts caused by other HPV types. High-grade neoplasia represents an abortive infection in which viral gene expression becomes deregulated, and the normal life cycle of the virus cannot be completed. Most cervical cancers arise within the cervical transformation zone at the squamous/columnar junction, and it has been suggested that this is a site where productive infection may be inefficiently supported. The high-risk E6 and E7 proteins drive cell proliferation through their association with PDZ domain proteins and Rb (retinoblastoma), and contribute to neoplastic progression, whereas E6-mediated p53 degradation prevents the normal repair of chance mutations in the cellular genome. Cancers usually arise in individuals who fail to resolve their infection and who retain oncogene expression for years or decades. In most individuals, immune regression eventually leads to clearance of the virus, or to its maintenance in a latent or asymptomatic state in the basal cells.


Journal of Virology | 2003

Organization of Human Papillomavirus Productive Cycle during Neoplastic Progression Provides a Basis for Selection of Diagnostic Markers

Kate Middleton; Woei Peh; Shirley Southern; Heather Griffin; Karl Sotlar; Tomomi Nakahara; Amira M. El-Sherif; Lesley S. Morris; Rashmi Seth; Merilyn Hibma; David G. Jenkins; Paul C. Lambert; Nicholas Coleman; John Doorbar

ABSTRACT The productive cycle of human papillomaviruses (HPVs) can be divided into discrete phases. Cell proliferation and episomal maintenance in the lower epithelial layers are followed by genome amplification and the expression of capsid proteins. These events, which occur in all productive infections, can be distinguished by using antibodies to viral gene products or to surrogate markers of their expression. Here we have compared precancerous lesions caused by HPV type 16 (HPV16) with lesions caused by HPV types that are not generally associated with human cancer. These include HPV2 and HPV11, which are related to HPV16 (supergroup A), as well as HPV1 and HPV65, which are evolutionarily divergent (supergroups E and B). HPV16-induced low-grade squamous intraepithelial lesions (CIN1) are productive infections which resemble those caused by other HPV types. During progression to cancer, however, the activation of late events is delayed, and the thickness of the proliferative compartment is progressively increased. In many HPV16-induced high-grade squamous intraepithelial lesions (CIN3), late events are restricted to small areas close to the epithelial surface. Such heterogeneity in the organization of the productive cycle was seen only in lesions caused by HPV16 and was not apparent when lesions caused by other HPV types were compared. By contrast, the order in which events in the productive cycle were initiated was invariant and did not depend on the infecting HPV type or the severity of disease. The distribution of viral gene products in the infected cervix depends on the extent to which the virus can complete its productive cycle, which in turn reflects the severity of cervical neoplasia. It appears from our work that the presence of such proteins in cells at the epithelial surface allows the severity of the underlying disease to be predicted and that markers of viral gene expression may improve cervical screening.


Virology | 1990

Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line

John Doorbar; A. Parton; K. Hartley; L. Banks; T. Crook; Margaret Stanley; Lionel Crawford

The W12 cell line was derived from a low grade cervical lesion, and is unique among HPV16-containing cell lines in carrying its HPV16 genome as a multicopy episome. As such it is thought to be more representative of a premalignant HPV16-induced tumor than the cervical cancers from which other cell lines have been derived. Using the polymerase chain reaction (PCR), we report here the identification and cloning of a number of novel cDNA species, which appear to be characteristic of the W12 cell line. Two species were identified with E6* coding capacity (E6*I and E6*III). The smaller of these (1009 bp) was predicted to encode a novel E6*III polypeptide containing C-terminal amino acids derived from an out of frame region of the E2/E4 ORFs. The larger species (1480 bp) contained, in addition to the E6*I ORF, an intact E7 ORF and probably represents the transcript for E7 expression, as the E7 protein was readily detectable in the W12 cell line. Both species appeared to be transcribed from the p97 promoter which has been shown to be active in other cell lines. A putative E2 repressor cDNA (891 bp), an E1/E4 message (883 bp), and two novel late cDNA species (1757 and 2031 bp) were also detected, allowing the identification of a splice acceptor immediately in front of the L1 open reading frame (nt 5637) and a splice donor at nt 3631. Although the 1757-base species has the capacity to encode a full-length L1 protein, both messages use a splice donor at nt 1301, and are thus not analogous to late species previously identified in HPV11. Of the six cDNAs cloned, only the 1480-bp E7 message has been observed in other HPV16-containing cell lines. The presence of L1 transcripts, and an E2 repressor mRNA, although unexpected, may reflect the different origins of the W12 cell line.


Journal of Virology | 2002

Life Cycle Heterogeneity in Animal Models of Human Papillomavirus-Associated Disease

Woei Ling Peh; Kate Middleton; Neil D. Christensen; P.K. Nicholls; Kiyofumi Egawa; Karl Sotlar; Janet L. Brandsma; Alan Percival; Jon Lewis; Wen Jun Liu; John Doorbar

ABSTRACT Animal papillomaviruses are widely used as models to study papillomavirus infection in humans despite differences in genome organization and tissue tropism. Here, we have investigated the extent to which animal models of papillomavirus infection resemble human disease by comparing the life cycles of 10 different papillomavirus types. Three phases in the life cycles of all viruses were apparent using antibodies that distinguish between early events, the onset of viral genome amplification, and the expression of capsid proteins. The initiation of these phases follows a highly ordered pattern that appears important for the production of virus particles. The viruses examined included canine oral papillomavirus, rabbit oral papillomavirus (ROPV), cottontail rabbit papillomavirus (CRPV), bovine papillomavirus type 1, and human papillomavirus types 1, 2, 11, and 16. Each papillomavirus type showed a distinctive gene expression pattern that could be explained in part by differences in tissue tropism, transmission route, and persistence. As the timing of life cycle events affects the accessibility of viral antigens to the immune system, the ideal model system should resemble human mucosal infection if vaccine design is to be effective. Of the model systems examined here, only ROPV had a tissue tropism and a life cycle organization that resembled those of the human mucosal types. ROPV appears most appropriate for studies of the life cycles of mucosal papillomavirus types and for the development of prophylactic vaccines. The persistence of abortive infections caused by CRPV offers advantages for the development of therapeutic vaccines.


Reviews in Medical Virology | 2015

Human papillomavirus molecular biology and disease association

John Doorbar; Nagayasu Egawa; Heather Griffin; Christian Kranjec; Isao Murakami

Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal species including humans. Viruses that have co‐evolved slowly in this way typically cause chronic inapparent infections, with virion production in the absence of apparent disease. This is the case for many Beta and Gamma HPV types. The Alpha papillomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas. These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent environment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7, and E5 proteins. High‐risk E6 and E7 proteins differ from their low‐risk counterparts however in being able to drive cell cycle entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot resolve high‐risk HPV infection. Most work to date has focused on the study of high‐risk HPV types such as HPV 16 and 18, which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones) and toward understanding the mechanisms by which low‐risk HPV types can sometimes give rise to papillomatosis and under certain situations even cancers. Copyright


Journal of Virology | 2003

Depletion of Langerhans Cells in Human Papillomavirus Type 16-Infected Skin Is Associated with E6-Mediated Down Regulation of E-Cadherin

Kate Matthews; Cheng Mee Leong; Lindsay Baxter; Emma Inglis; Kankatsu Yun; B. Thomas Bäckström; John Doorbar; Merilyn Hibma

ABSTRACT Human papillomavirus type 16 (HPV16) is an oncogenic virus that causes persistent infections in cervical epithelium. The chronic nature of HPV16 infections suggests that this virus actively evades the host immune response. Intraepithelial Langerhans cells (LC) are antigen-presenting cells that are critical in T-cell priming in response to viral infections of the skin. Here we show that HPV16 infection is directly associated with a reduction in the numbers of LC in infected epidermis. Adhesion between keratinocytes (KC) and LC, mediated by E-cadherin, is important in the retention of LC in the skin. Cell surface E-cadherin is reduced on HPV16-infected basal KC, and this is directly associated with the reduction in numbers of LC in infected epidermis. Expression of a single viral early protein, HPV16 E6, in KC reduces levels of cell surface E-cadherin thereby interfering with E-cadherin-mediated adhesion. Through this pathway, E6 expression in HPV16-infected KC may limit presentation of viral antigens by LC to the immune system, thus preventing the initiation of a cell-mediated immune response and promoting survival of the virus.


The Journal of Pathology | 2012

One virus, one lesion—individual components of CIN lesions contain a specific HPV type

Wim Quint; David Jenkins; Anco Molijn; Linda Struijk; Miekel M. van de Sandt; John Doorbar; Johann Mols; Christine Van Hoof; Karin Hardt; Frank Struyf; Brigitte Desiree Alberte Colau

In 20–40% of cervical intra‐epithelial neoplasia (CIN) and in 4–8% of cervical carcinoma tissue specimens, multiple HPV genotypes have been detected. Whole tissue section (WTS) PCR does not determine how the individual types relate causally to complex and multiple CIN. Our objective was to determine whether laser capture micro‐dissection (LCM) with HPV PCR genotyping (LCM‐PCR) could accurately recover type‐specific HPV DNA from epithelial cells in individual areas of CIN and normal epithelium, and whether one or more viruses are present in one lesion. For that, histologically selected samples of CIN and normal epithelium were isolated by LCM and analysed by the SPF10 PCR/LiPA25 (version 1) HPV genotyping system for 25 HPV genotypes. HPV genotypes detected in 756 areas of CIN (grade 1, 2 or 3) by LCM‐PCR were compared with results obtained by WTS‐PCR in 60 cases (74 biopsies). We showed that when a single HPV type is detected by WTS‐PCR, that type was almost always (94%; 29/31) recovered by LCM‐PCR from CIN. When multiple HPV types were present by WTS‐PCR, their distribution within histological sections could be mapped by LCM‐PCR. Association of a single HPV type with a discrete area of CIN was found for 93% (372/399) of LCM fragments analysed by PCR. We found colliding CIN lesions associated with separate HPV types and only 62% (61/99) of HPV types detected by WTS‐PCR were found in CIN by LCM‐PCR. Therefore, the LCM‐PCR technique was found very accurate for high‐resolution HPV genotyping and for assigning an individual HPV type to an area of CIN. At LCM level, in cervical biopsy sections with multiple HPV infections, the relation between HPV types and CIN lesions is often complex. Almost every HPV type found in CIN by LCM‐PCR is associated with a biological separate independent CIN lesion—one virus, one lesion. Copyright


Disease Markers | 2007

Papillomavirus Life Cycle Organization and Biomarker Selection

John Doorbar

Human papillomaviruses (HPVs) are a diverse group of viruses that cause epithelial lesions of varying severity. Of the 100 or so types that have been identified, around 40 can infect the cervix, with a subset of these causing lesions that can progress to high-grade neoplasia and cervical cancer. These high-risk types are prevalent in the general population, and can predispose to the development of cancer in women who cannot resolve their infection. Virus infection usually leads to the establishment of productive flat warts, or to maintenance of the viral genome in an asymptomatic or latent state. Virus synthesis depends on the ordered expression of viral gene products as the infected basal cell migrates towards the epithelial surface. E7 is expressed in the lower epithelial layers, and is followed eventually by the expression of E4 and L1 closer to the epithelial surface. This ordered pattern changes in characteristic ways during neoplastic progression and latency, and can be irreversibly fixed following integration of the viral genome into the host cell chromosome. Our understanding of expression patterns and their significance, is beginning to explain the nature of disease progression, and offers a rational basis for the selection of biomarkers that may be used to predict disease status and prognostic outcome.


Virology | 2007

G2/M cell cycle arrest in the life cycle of viruses

Clare Davy; John Doorbar

Abstract There is increasing evidence that viral infection, expression of viral protein or the presence of viral DNA causes the host cell cycle to arrest during G2/M. The mechanisms used by viruses to cause arrest vary widely; some involve the activation of the cellular pathways that induce arrest in response to DNA damage, while others use completely novel means. The analysis of virus-mediated arrest has not been proven easy, and in most cases the consequences of arrest for the virus life cycle are not well defined. However, a number of effects of arrest are being investigated and it will be interesting to see to what extent perturbation of the G2/M transition is involved in viral infections.


Journal of Virology | 2004

Functional Analysis of the Human Papillomavirus Type 16 E1∧E4 Protein Provides a Mechanism for In Vivo and In Vitro Keratin Filament Reorganization

Qian Wang; Heather Griffin; Shirley Southern; Deborah J. Jackson; Ana Martin; Pauline McIntosh; Clare Davy; Phillip J. Masterson; Philip A. Walker; Peter Laskey; M. Bishr Omary; John Doorbar

ABSTRACT High-risk human papillomaviruses, such as human papillomavirus type 16 (HPV16), are the primary cause of cervical cancer. The HPV16 E1∧E4 protein associates with keratin intermediate filaments and causes network collapse when expressed in epithelial cells in vitro. Here, we show that keratin association and network reorganization also occur in vivo in low-grade cervical neoplasia caused by HPV16. The 16E1∧E4 protein binds to keratins directly and interacts strongly with keratin 18, a member of the type I intermediate-filament family. By contrast, 16E1∧E4 bound only weakly to keratin 8, a type II intermediate-filament protein, and showed no detectable affinity for the type III protein, vimentin. The N-terminal 16 amino acids of the 16E1∧E4 protein, which contains the YPLLXLL motif that is conserved among supergroup A viruses, were sufficient to target green fluorescent protein to the keratin network. When expressed in the SiHa cervical epithelial cell line, the full-length 16E1∧E4 protein caused an almost total inhibition of keratin dynamics, despite the phosphorylation of keratin 18 at serine 33, which normally leads to 14-3-3-mediated keratin solubilization. Mutant 16E1∧E4 proteins which lack the LLKLL motif, or which have lost amino acids from their C termini, and which were compromised in the ability to associate with keratins did not disturb normal keratin dynamics. 16E1∧E4 was found to exist as dimers and hexamers, whereas a C-terminal deletion mutant (16E1∧E4Δ87-92) existed as monomers and formed multimeric structures only poorly. Considered together, our results suggest that by associating with keratins through its N terminus, and by associating with itself through its C terminus, 16E1∧E4 may act as a keratin cross-linker and prevent the movement of keratins between the soluble and insoluble compartments. The increase in avidity associated with multimeric binding may contribute to the ability of 16E1∧E4 to sequester its cellular targets in the cytoplasm.

Collaboration


Dive into the John Doorbar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Quint

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marisa Gariglio

University of Eastern Piedmont

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clare Davy

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence Banks

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge