Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. Desmond is active.

Publication


Featured researches published by John E. Desmond.


NeuroImage | 1999

Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex.

Russell A. Poldrack; Anthony D. Wagner; Matthew W. Prull; John E. Desmond; Gary H. Glover; John D. E. Gabrieli

Neuroimaging and neuropsychological studies have implicated left inferior prefrontal cortex (LIPC) in both semantic and phonological processing. In this study, functional magnetic resonance imaging was used to examine whether separate LIPC regions participate in each of these types of processing. Performance of a semantic decision task resulted in extensive LIPC activation compared to a perceptual control task. Phonological processing of words and pseudowords in a syllable-counting task resulted in activation of the dorsal aspect of the left inferior frontal gyrus near the inferior frontal sulcus (BA 44/45) compared to a perceptual control task, with greater activation for nonwords compared to words. In a direct comparison of semantic and phonological tasks, semantic processing preferentially activated the ventral aspect of the left inferior frontal gyrus (BA 47/45). A review of the literature demonstrated a similar distinction between left prefrontal regions involved in semantic processing and phonological/lexical processing. The results suggest that a distinct region in the left inferior frontal cortex is involved in semantic processing, whereas other regions may subserve phonological processes engaged during both semantic and phonological tasks.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Sex differences in the neural basis of emotional memories

Turhan Canli; John E. Desmond; Zuo Zhao; John D. E. Gabrieli

Psychological studies have found better memory in women than men for emotional events, but the neural basis for this difference is unknown. We used event-related functional MRI to assess whether sex differences in memory for emotional stimuli is associated with activation of different neural systems in men and women. Brain activation in 12 men and 12 women was recorded while they rated their experience of emotional arousal in response to neutral and emotionally negative pictures. In a recognition memory test 3 weeks after scanning, highly emotional pictures were remembered best, and remembered better by women than by men. Men and women activated different neural circuits to encode stimuli effectively into memory even when the analysis was restricted to pictures rated equally arousing by both groups. Men activated significantly more structures than women in a network that included the right amygdala, whereas women activated significantly fewer structures in a network that included the left amygdala. Women had significantly more brain regions where activation correlated with both ongoing evaluation of emotional experience and with subsequent memory for the most emotionally arousing pictures. Greater overlap in brain regions sensitive to current emotion and contributing to subsequent memory may be a neural mechanism for emotions to enhance memory more powerfully in women than in men.


NeuroImage | 1999

Load-Dependent Roles of Frontal Brain Regions in the Maintenance of Working Memory

Bart Rypma; Vivek Prabhakaran; John E. Desmond; Gary H. Glover; John D. E. Gabrieli

Brain imaging studies have suggested a critical role for prefrontal cortex in working memory (WM) tasks that require both maintainenance and manipulation of information over time in delayed-response WM tasks. In the present study, functional magnetic resonance imaging (fMRI) was used to examine whether prefrontal areas are activated when only maintenance is required in a delayed-response WM task, without the overt requirement to manipulate the stored information. In two scans, six subjects performed WM tasks in which, on each trial, they (1) encoded 1, 3, or 6 to-be-remembered letters, (2) maintained these letters across a 5-second unfilled delay, and (3) determined whether a single probe letter was or was not part of the memory set. Activation of left caudal inferior frontal gyrus was observed, relative to the 1-letter task, when subjects were required to maintain 3 letters in WM. When subjects were required to maintain 6 letters in WM, additional prefrontal areas, most notably middle and superior frontal gyri, were activated bilaterally. Thus, increasing the amount of to-be-maintained information, without any overt manipulation requirement, resulted in the recruitment of wide-spread frontal-lobe regions. Inferior frontal gyrus activation was left-hemisphere dominant in both the 3- and 6-letter conditions, suggesting that such activation reflected material-specific verbal processes. Activation in middle and superior frontal gyri appeared only in the 6-letter condition and was right-hemisphere dominant, suggesting that such activation reflected material-independent executive processes.


Behavioral Neuroscience | 2001

An fMRI Study of Personality Influences on Brain Reactivity to Emotional Stimuli

Turhan Canli; Zuo Zhao; John E. Desmond; Eunjoo Kang; James J. Gross; John D. E. Gabrieli

Functional imaging studies have examined which brain regions respond to emotional stimuli, but they have not determined how stable personality traits moderate such brain activation. Two personality traits, extraversion and neuroticism, are strongly associated with emotional experience and may thus moderate brain reactivity to emotional stimuli. The present study used functional magnetic resonance imaging to directly test whether individual differences in brain reactivity to emotional stimuli are correlated with extraversion and neuroticism in healthy women. Extraversion was correlated with brain reactivity to positive stimuli in localized brain regions, and neuroticism was correlated with brain reactivity to negative stimuli in localized brain regions. This study provides direct evidence that personality is associated with brain reactivity to emotional stimuli and identifies both common and distinct brain regions where such modulation takes place.


The Journal of Neuroscience | 1997

Lobular Patterns of Cerebellar Activation in Verbal Working-Memory and Finger-Tapping Tasks as Revealed by Functional MRI

John E. Desmond; John D. E. Gabrieli; Anthony D. Wagner; Bruce L. Ginier; Gary H. Glover

The lobular distributions of functional activation of the cerebellum during verbal working-memory and finger movement tasks were investigated using functional magnetic resonance imaging (fMRI). Relative to a rest control, finger tapping of the right hand produced ipsilateral-increased activation in HIV/HV [Roman numeral designations based on Larsell’s (Larsell and Jansen, 1972) nomenclature] and HVI and weaker activation in HVIII that was stronger on the ipsilateral side. For a working-memory task, subjects were asked to remember six (high load) or one (low load) visually presented letters across a brief delay. To assess the motoric aspects of rehearsal in the absence of working memory, we asked the subjects to repeatedly read subvocally six or one letters at a rate that approximated the internally generated rehearsal of working memory (motoric rehearsal task). For both tasks, bilateral regions of the superior cerebellar hemispheres (left superior HVIIA and right HVI) and portions of posterior vermis (VI and superior VIIA) exhibited increased activation during high relative to low load conditions. In contrast, the right inferior cerebellar hemisphere (HVIIB) exhibited this load effect only during the working-memory task. We hypothesize that HVI and superior HVIIA activation represents input from the articulatory control system of working memory from the frontal lobes and that HVIIB activation is derived from the phonological store in temporal and parietal regions. From these inputs, the cerebellum could compute the discrepancy between actual and intended phonological rehearsal and use this information to update a feedforward command to the frontal lobes, thereby facilitating the phonological loop.


Cognitive Psychology | 1997

Neural Substrates of Fluid Reasoning: An fMRI Study of Neocortical Activation during Performance of the Raven's Progressive Matrices Test☆

Vivek Prabhakaran; Jennifer A.L. Smith; John E. Desmond; Gary H. Glover; John D. E. Gabrieli

We examined brain activation, as measured by functional magnetic resonance imaging, during problem solving in seven young, healthy participants. Participants solved problems selected from the Ravens Progressive Matrices Test, a test known to predict performance on a wide range of reasoning tasks. In three conditions, participants solved problems requiring (1) analytic reasoning; (2) figural or visuospatial reasoning; or (3) simple pattern matching that served as a perceptual-motor control. Right frontal and bilateral parietal regions were activated more by figural than control problems. Bilateral frontal and left parietal, occipital, and temporal regions were activated more by analytic than figural problems. All of these regions were activated more by analytic than match problems. Many of these activations occurred in regions associated with working memory. Figural reasoning activated areas involved in spatial and object working memory. Analytic reasoning activated additional areas involved in verbal working memory and domain-independent associative and executive processes. These results suggest that fluid reasoning is mediated by a composite of working memory systems.


Trends in Cognitive Sciences | 1998

Neuroimaging studies of the cerebellum: language, learning and memory

John E. Desmond; Julie A. Fiez

During the decade following a functional neuroimaging study of language that showed cerebellar involvement in a cognitive task, PET and fMRI studies have continued to provide evidence that the role of the cerebellum extends beyond that of motor control and that this structure contributes in some way to cognitive operations. In this review, we describe neuroimaging evidence for cerebellar involvement in working memory, implicit and explicit learning and memory, and language, and we discuss some of the problems and limitations faced by researchers who use neuroimaging to investigate cerebellar function. We also raise a set of outstanding questions that need to be addressed through further neuroimaging and behavioral experiments before differing functional accounts of cerebellar involvement in cognition can be resolved.


Nature | 1998

Sniffing and smelling: separate subsystems in the human olfactory cortex

Noam Sobel; Vivek Prabhakaran; John E. Desmond; Gary H. Glover; Richard L. Goode; Edith V. Sullivan; John D. E. Gabrieli

The sensation and perception of smell (olfaction) are largely dependent on sniffing, which is an active stage of stimulus transport and therefore an integral component of mammalian olfaction,. Electrophysiological data obtained from study of the hedgehog, rat, rabbit, dog and monkey indicate that sniffing (whether or not an odorant is present) induces an oscillation of activity in the olfactory bulb, driving the piriform cortex in the temporal lobe, in other words, the piriform is driven by the olfactory bulb at the frequency of sniffing. Here we use functional magnetic resonance imaging (fMRI) that is dependent on the level of oxygen in the blood to determine whether sniffing can induce activation in the piriform of humans, and whether this activation can be differentiated from activation induced by an odorant. We find that sniffing, whether odorant is present or absent, induces activation primarily in the piriform cortex of the temporal lobe and in the medial and posterior orbito-frontal gyri of the frontal lobe. The source of the sniff-induced activation is the somatosensory stimulation that is induced by air flow through the nostrils. In contrast, a smell, regardless of sniffing, induces activation mainly in the lateral and anterior orbito-frontal gyri of the frontal lobe. The dissociation between regions activated by olfactory exploration (sniffing) and regions activated by olfactory content (smell) shows a distinction in brain organization in terms of human olfaction.


Journal of Neuroscience Methods | 2002

Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses

John E. Desmond; Gary H. Glover

Estimation of statistical power in functional MRI (fMRI) requires knowledge of the expected percent signal change between two conditions as well as estimates of the variability in percent signal change. Variability can be divided into intra-subject variability, reflecting noise within the time series, and inter-subject variability, reflecting subject-to-subject differences in activation. The purpose of this study was to obtain estimates of percent signal change and the two sources of variability from fMRI data, and then use these parameter estimates in simulation experiments in order to generate power curves. Of interest from these simulations were conclusions concerning how many subjects are needed and how many time points within a scan are optimal in an fMRI study of cognitive function. Intra-subject variability was estimated from resting conditions, and inter-subject variability and percent signal change were estimated from verbal working memory data. Simulations derived from these parameters illustrate how percent signal change, intra- and inter-subject variability, and number of time points affect power. An empirical test experiment, using fMRI data acquired during somatosensory stimulation, showed good correspondence between the simulation-based power predictions and the power observed within somatosensory regions of interest. Our analyses suggested that for a liberal threshold of 0.05, about 12 subjects were required to achieve 80% power at the single voxel level for typical activations. At more realistic thresholds, that approach those used after correcting for multiple comparisons, the number of subjects doubled to maintain this level of power.


Neuroreport | 1998

Hemispheric asymmetry for emotional stimuli detected with fMRI

Turhan Canli; John E. Desmond; Zuo Zhao; Gary H. Glover; John D. E. Gabrieli

CURRENT brain models of emotion processing hypothesize that positive (or approach-related) emotions are lateralized towards the left hemisphere, whereas negative (or withdrawal-related) emotions are lateralized towards the right hemisphere. Brain imaging studies, however, have so far failed to document such hemispheric lateralization. In a functional magnetic resonance imaging (fMRI) study, 14 female subjects viewed alternating blocks of emotionally valenced positive and negative pictures. When the experience of valence was equated for arousal, overall brain reactivity was lateralized towards the left hemisphere for positive pictures and towards the right hemisphere for negative pictures. This study provides direct support for the valence hypothesis, under conditions of equivalent arousal, by means of functional brain imaging.

Collaboration


Dive into the John E. Desmond's collaboration.

Top Co-Authors

Avatar

John D. E. Gabrieli

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Moore

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivek Prabhakaran

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge