Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John E. Doe is active.

Publication


Featured researches published by John E. Doe.


Critical Reviews in Toxicology | 2006

IPCS Framework for Analyzing the Relevance of a Noncancer Mode of Action for Humans

Alan R. Boobis; John E. Doe; Barbara Heinrich-Hirsch; M. E. (Bette) Meek; Sharon Munn; Mathuros Ruchirawat; Josef Schlatter; Jennifer Seed; Carolyn Vickers

Structured frameworks are extremely useful in promoting transparent, harmonized approaches to the risk assessment of chemicals. One area where this has been particularly successful is in the analysis of modes of action (MOAs) for chemical carcinogens in experimental animals and their relevance to humans. The International Programme on Chemical Safety (IPCS) recently published an updated version of its MOA framework in animals to address human relevance (cancer human relevance framework, or HRF). This work has now been extended to noncancer effects, with the eventual objective of harmonizing framework approaches to both cancer and noncancer endpoints. As in the cancer HRF, the first step is to determine whether the weight of evidence based on experimental observations is sufficient to establish a hypothesized MOA. This comprises a series of key events causally related to the toxic effect, identified using an approach based on the Bradford Hill criteria. These events are then compared qualitatively and, next, quantitatively between experimental animals and humans. The output of the analysis is a clear statement of conclusions, together with the confidence, analysis, and implications of the findings. This framework provides a means of ensuring a transparent evaluation of the data, identification of key data gaps and of information that would be of value in the further risk assessment of the compound, such as on dose–response relationships, and recognition of potentially susceptible subgroups, for example, based on life-stage considerations.


Critical Reviews in Toxicology | 2006

A Tiered Approach to Systemic Toxicity Testing for Agricultural Chemical Safety Assessment

John E. Doe; Alan R. Boobis; Ann M. Blacker; Vicki L. Dellarco; Nancy G. Doerrer; Claire Franklin; Jay I. Goodman; Joel M. Kronenberg; Richard Lewis; Ernest E. McConnell; Thierry Mercier; Angelo Moretto; Canice Nolan; Stephanie Padilla; Whang Phang; Roland Solecki; Lorraine Tilbury; Bennard van Ravenzwaay; Douglas C. Wolf

Aproposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studies are scientifically appropriate and necessary without being redundant, and that tests emphasize toxicological endpoints and exposure durations that are relevant for risk assessment. The ACSA Systemic Toxicity Task Force proposes an approach to systemic toxicity testing as one part of the overall assessment of a compounds potential to cause adverse effects on health. The approach is designed to provide more relevant data for deriving reference doses for shorter time periods of human exposure, and includes fewer studies for deriving longer term reference doses—that is, neither a 12-month dog study nor a mouse carcinogenicity study is recommended. All available data, including toxicokinetics and metabolism data and life stages information, are taken into account. The proposed tiered testing approach has the potential to provide new risk assessment information for shorter human exposure durations while reducing the number of animals used and without compromising the sensitivity of the determination of longer term reference doses.


Critical Reviews in Toxicology | 2007

Issues in the design and interpretation of chronic toxicity and carcinogenicity studies in rodents: approaches to dose selection.

Lorenz R. Rhomberg; Karl Baetcke; Jerry Blancato; James S. Bus; Samuel M. Cohen; Rory B. Conolly; Rakesh Dixit; John E. Doe; Karen Ekelman; Penny Fenner-Crisp; Paul Harvey; Dale Hattis; Abigail Jacobs; David Jacobson‐Kram; Tom Lewandowski; Robert Liteplo; Olavi Pelkonen; Jerry M. Rice; Diana Somers; Angelo Turturro; Webster West; Stephen S. Olin

For more than three decades chronic studies in rodents have been the benchmark for assessing the potential long-term toxicity, and particularly the carcinogenicity, of chemicals. With doses typically administered for about 2 years (18 months to lifetime), the rodent bioassay has been an integral component of testing protocols for food additives, pesticides, pharmaceuticals, industrial chemicals, and all manner of byproducts and environmental contaminants. Over time, the data from these studies have been used to address an increasing diversity of questions related to the assessment of human health risks, adding complexity to study design and interpretation. An earlier ILSI RSI working group developed a set of principles for the selection of doses for chronic rodent studies (). The present report builds on that work, examining some of the issues that arise and offering new perspectives and approaches for putting the principles into practice. Dose selection is considered both from the prospective viewpoint of the choosing of dose levels for a study and from the retrospective interpretation of study results in light of the doses used. A main theme of this report is that the purposes and objectives of chronic rodent studies vary and should be clearly defined in advance. Dose placement, then, should be optimized to achieve study objectives. For practical reasons, most chronic studies today must be designed to address multiple objectives, often requiring trade-offs and innovative approaches in study design. A systematic approach to dose selection should begin with recognition that the design of chronic studies occurs in the context of a careful assessment of the accumulated scientific information on the test substance, the relevant risk management questions, priorities and mandates, and the practical limitations and constraints on available resources. A stepwise process is described. The aim is to increase insofar as possible the utility of an expensive and time-consuming experiment. The kinds of data that are most commonly needed for dose selection and for understanding the dose-related results of chronic rodent studies, particularly carcinogenicity studies, are discussed as “design/interpretation factors.” They comprise both the inherent characteristics of the test substance and indicators of biological damage, perturbation or stress among the experimental animals. They may be primary toxicity endpoints, predictors or indicators of appropriate dose selection, or indicators of conditions to be avoided in dose selection. The application and interpretation of design/interpretation factors is conditioned by the study objectives–what is considered desirable will depend on the strategy for choice of doses that is being followed. The challenge is to select doses that accommodate all of the issues raised by the relevant design/interpretation factors. Three case studies are presented here that illustrate the interplay between study objectives and the design and selection of doses for chronic rodent studies. These examples also highlight issues associated with multiple plausible modes of action, multiple pathways for biotransformation of the chemical, extraneous high-dose effects, the use of modeling in dose selection, and the implications of human exposure levels. Finally, looking to the future, the report explores seven potential paradigm shifts for risk assessment that will significantly impact the design and interpretation of toxicity and carcinogenicity studies.


Critical Reviews in Toxicology | 2014

A 21st century roadmap for human health risk assessment

Timothy P. Pastoor; Ammie N. Bachman; David R. Bell; Samuel M. Cohen; Michael Dellarco; Ian C. Dewhurst; John E. Doe; Nancy G. Doerrer; Michelle R. Embry; Ronald N. Hines; Angelo Moretto; Richard D. Phillips; J. Craig Rowlands; Jennifer Young Tanir; Douglas C. Wolf; Alan R. Boobis

Abstract The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources.


Annals of Epidemiology | 2003

Epidemiologic Studies of Occupational Pesticide Exposure and Cancer: Regulatory Risk Assessments and Biologic Plausibility

John F. Acquavella; John E. Doe; John Tomenson; Graham Chester; John E. Cowell; Louis Bloemen

Epidemiologic studies frequently show associations between self-reported use of specific pesticides and human cancers. These findings have engendered debate largely on methodologic grounds. However, biologic plausibility is a more fundamental issue that has received only superficial attention. The purpose of this commentary is to review briefly the toxicology and exposure data that are developed as part of the pesticide regulatory process and to discuss the applicability of this data to epidemiologic research. The authors also provide a generic example of how worker pesticide exposures might be estimated and compared to relevant toxicologic dose levels. This example provides guidance for better characterization of exposure and for consideration of biologic plausibility in epidemiologic studies of pesticides.


Critical Reviews in Toxicology | 2006

Agricultural chemical safety assessment: A multisector approach to the modernization of human safety requirements.

Neil Carmichael; Hugh A. Barton; Alan R. Boobis; Ralph L. Cooper; Vicki L. Dellarco; Nancy G. Doerrer; Penelope A. Fenner-Crisp; John E. Doe; James C. Lamb; Timothy P. Pastoor

Better understanding of toxicological mechanisms, enhanced testing capabilities, and demands for more sophisticated data for safety and health risk assessment have generated international interest in improving the current testing paradigm for agricultural chemicals. To address this need, the ILSI Health and Environmental Sciences Institute convened a large and diverse group of international experts to develop a credible and viable testing approach that includes scientifically appropriate studies that are necessary without being redundant, and that emphasize toxicological endpoints and exposure durations that are relevant for risk assessment. Benefits of the proposed approach include improved data for risk assessment, greater efficiency, use of fewer animals, and better use of resources. From the outset of this endeavor, it was unanimously agreed that a tiered approach should be designed to incorporate existing knowledge on the chemistry, toxicology, and actual human exposure scenarios of the compound, with integration of studies on metabolism/kinetics, life stages, and systemic toxicities. Three international task forces were charged with designing study types and endpoints on metabolism/ kinetics, life stages, and systemic toxicities to be used in the tiered approach. This tiered testing proposal departs from the current standardized list of hazard studies used by many national authorities, and represents the first comprehensive effort of its kind to scientifically redesign the testing framework for agricultural chemicals.


Critical Reviews in Toxicology | 2014

Risk assessment in the 21st century: roadmap and matrix.

Michelle R. Embry; Ammie N. Bachman; David R. Bell; Alan R. Boobis; Samuel M. Cohen; Michael Dellarco; Ian C. Dewhurst; Nancy G. Doerrer; Ronald N. Hines; Angelo Moretto; Timothy P. Pastoor; Richard D. Phillips; J. Craig Rowlands; Jennifer Young Tanir; Douglas C. Wolf; John E. Doe

Abstract The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes in detail the process for using the roadmap and matrix. The purpose of this methodology is to optimize the use of prior information and testing resources (animals, time, facilities, and personnel) to efficiently and transparently reach a risk and/or safety determination. Based on the particular problem, exposure and toxicity data should have sufficient precision to make such a decision. Estimates of exposure and toxicity, bounded by variability and/or uncertainty, are plotted on the X- and Y-axes of the RISK21 matrix, respectively. The resulting intersection is a highly visual representation of estimated risk. Decisions can then be made to increase precision in the exposure or toxicity estimates or declare that the available information is sufficient. RISK21 represents a step forward in the goal to introduce new methodologies into 21st century risk assessment. Indeed, because of its transparent and visual process, RISK21 has the potential to widen the scope of risk communication beyond those with technical expertise.


Critical Reviews in Toxicology | 2011

Using mode of action information to improve regulatory decision-making: An ECETOC/ILSI RF/HESI workshop overview

Neil Carmichael; Melanie Bausen; Alan R. Boobis; Samuel M. Cohen; Michelle R. Embry; Claudia Fruijtier-Pölloth; Helmut Greim; Richard Lewis; M.E. (Bette) Meek; Howard R. Mellor; Carolyn Vickers; John E. Doe

The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), the International Life Sciences Institute (ILSI) Research Foundation (RF), and the ILSI Health and Environmental Sciences Institute (HESI) hosted a workshop in November 2009 to review current practice in the application of mode of action (MOA) considerations in chemical risk assessment. The aim was to provide a rationale for a more general, but flexible approach and to propose steps to facilitate broader uptake and use of the MOA concept. There was consensus amongst the workshop participants that it will require substantial effort and cooperation from the multiple disciplines involved to embrace a common, consistent, and transparent approach. Setting up a repository of accepted MOAs and associated guidance concerning appropriate data to support specific MOAs for critical effects would facilitate categorization of chemicals and allow predictions of toxicity outcomes by read-across. This should in future contribute to the reduction of toxicity testing in animals. The workshop participants also acknowledged the value and importance of human data and the importance of integrating information from biological pathway analyses into current MOA/human relevance frameworks.


Annals of Epidemiology | 2003

Original reportsEpidemiologic Studies of Occupational Pesticide Exposure and Cancer: Regulatory Risk Assessments and Biologic Plausibility

John F. Acquavella; John E. Doe; John Tomenson; Graham Chester; John E. Cowell; Louis Bloemen

Epidemiologic studies frequently show associations between self-reported use of specific pesticides and human cancers. These findings have engendered debate largely on methodologic grounds. However, biologic plausibility is a more fundamental issue that has received only superficial attention. The purpose of this commentary is to review briefly the toxicology and exposure data that are developed as part of the pesticide regulatory process and to discuss the applicability of this data to epidemiologic research. The authors also provide a generic example of how worker pesticide exposures might be estimated and compared to relevant toxicologic dose levels. This example provides guidance for better characterization of exposure and for consideration of biologic plausibility in epidemiologic studies of pesticides.


Regulatory Toxicology and Pharmacology | 2016

Classification schemes for carcinogenicity based on hazard-identification have become outmoded and serve neither science nor society

Alan R. Boobis; Samuel M. Cohen; Vicki L. Dellarco; John E. Doe; Penelope A. Fenner-Crisp; Angelo Moretto; Timothy P. Pastoor; Rita Schoeny; Jennifer Seed; Douglas C. Wolf

Classification schemes for carcinogenicity based solely on hazard-identification such as the IARC monograph process and the UN system adopted in the EU have become outmoded. They are based on a concept developed in the 1970s that chemicals could be divided into two classes: carcinogens and non-carcinogens. Categorization in this way places into the same category chemicals and agents with widely differing potencies and modes of action. This is how eating processed meat can fall into the same category as sulfur mustard gas. Approaches based on hazard and risk characterization present an integrated and balanced picture of hazard, dose response and exposure and allow informed risk management decisions to be taken. Because a risk-based decision framework fully considers hazard in the context of dose, potency, and exposure the unintended downsides of a hazard only approach are avoided, e.g., health scares, unnecessary economic costs, loss of beneficial products, adoption of strategies with greater health costs, and the diversion of public funds into unnecessary research. An initiative to agree upon a standardized, internationally acceptable methodology for carcinogen assessment is needed now. The approach should incorporate principles and concepts of existing international consensus-based frameworks including the WHO IPCS mode of action framework.

Collaboration


Dive into the John E. Doe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel M. Cohen

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Douglas C. Wolf

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Nancy G. Doerrer

International Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle R. Embry

International Life Sciences Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge