John E. Lunn
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John E. Lunn.
Nucleic Acids Research | 2012
Marc Lohse; Anthony Bolger; Axel Nagel; Alisdair R. Fernie; John E. Lunn; Mark Stitt
Recent rapid advances in next generation RNA sequencing (RNA-Seq)-based provide researchers with unprecedentedly large data sets and open new perspectives in transcriptomics. Furthermore, RNA-Seq-based transcript profiling can be applied to non-model and newly discovered organisms because it does not require a predefined measuring platform (like e.g. microarrays). However, these novel technologies pose new challenges: the raw data need to be rigorously quality checked and filtered prior to analysis, and proper statistical methods have to be applied to extract biologically relevant information. Given the sheer volume of data, this is no trivial task and requires a combination of considerable technical resources along with bioinformatics expertise. To aid the individual researcher, we have developed RobiNA as an integrated solution that consolidates all steps of RNA-Seq-based differential gene-expression analysis in one user-friendly cross-platform application featuring a rich graphical user interface. RobiNA accepts raw FastQ files, SAM/BAM alignment files and counts tables as input. It supports quality checking, flexible filtering and statistical analysis of differential gene expression based on state-of-the art biostatistical methods developed in the R/Bioconductor projects. In-line help and a step-by-step manual guide users through the analysis. Installer packages for Mac OS X, Windows and Linux are available under the LGPL licence from http://mapman.gabipd.org/web/guest/robin.
Biochemical Journal | 2006
John E. Lunn; Regina Feil; Janneke H.M. Hendriks; Yves Gibon; Rosa Morcuende; Daniel Osuna; Wolf-Rüdiger Scheible; Petronia Carillo; Mohammad-Reza Hajirezaei; Mark Stitt
Tre6P (trehalose 6-phosphate) is implicated in sugar-signalling pathways in plants, but its exact functions in vivo are uncertain. One of the main obstacles to discovering these functions is the difficulty of measuring the amount of Tre6P in plant tissues. We have developed a highly specific assay, using liquid chromatography coupled to MS-Q3 (triple quadrupole MS), to measure Tre6P in the femto-picomole range. The Tre6P content of sucrose-starved Arabidopsis thaliana seedlings in axenic culture increased from 18 to 482 pmol x g(-1) FW (fresh weight) after adding sucrose. Leaves from soil-grown plants contained 67 pmol x g(-1) FW at the end of the night, which rose to 108 pmol x g(-1)FW after 4 h of illumination. Even greater changes in Tre6P content were seen after a 6 h extension of the dark period, and in the starchless mutant, pgm. The intracellular concentration of Tre6P in wild-type leaves was estimated to range from 1 to 15 microM. It has recently been reported that the addition of Tre6P to isolated chloroplasts leads to redox activation of AGPase (ADPglucose pyrophosphorylase) [Kolbe, Tiessen, Schluepmann, Paul, Ulrich and Geigenberger (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 11118-11123]. Using the new assay for Tre6P, we found that rising sugar levels in plants are accompanied by increases in the level of Tre6P, redox activation of AGPase and the stimulation of starch synthesis in vivo. These results indicate that Tre6P acts as a signalling metabolite of sugar status in plants, and support the proposal that Tre6P mediates sucrose-induced changes in the rate of starch synthesis.
Science | 2013
Vanessa Wahl; Jathish Ponnu; Armin Schlereth; Stéphanie Arrivault; Tobias Langenecker; Annika Franke; Regina Feil; John E. Lunn; Mark Stitt; Markus Schmid
Sweet Enough to Flower In making the developmental switch from vegetative growth to flowering, plants integrate diverse information, including photoperiod, hormone signals, and carbohydrate status. Wahl et al. (p. 704; see the Perspective by Danielson and Frommer) analyzed the physiology of the signaling sugar trehalose-6-phosphate (T6P) in Arabidopsis. Quantities of T6P cycle in daily rhythms that peak toward the end of the day. T6P levels in the shoot apical meristem mirrored sucrose levels. Disruption of T6P production also disrupted expression of the FLOWERING LOCUS T gene, which responds in leaves to day length and generates signals that direct the meristem to initiate flowering programs. T6P production also affected the signaling pathway that links the age of the plant to flowering. By incorporating requirements for T6P signaling in the flowering induction pathways, the plant ensures that adequate carbohydrate reserves have been accumulated. Thus, T6P regulates the shift to flowering by linking carbohydrate status to day length in the leaves and to developmental age in the shoot apical meristem. Specific sugar signals integrate carbohydrate status with day length and developmental age to regulate flowering. [Also see Perspective by Danielson and Frommer] The timing of the induction of flowering determines to a large extent the reproductive success of plants. Plants integrate diverse environmental and endogenous signals to ensure the timely transition from vegetative growth to flowering. Carbohydrates are thought to play a crucial role in the regulation of flowering, and trehalose-6-phosphate (T6P) has been suggested to function as a proxy for carbohydrate status in plants. The loss of TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) causes Arabidopsis thaliana to flower extremely late, even under otherwise inductive environmental conditions. This suggests that TPS1 is required for the timely initiation of flowering. We show that the T6P pathway affects flowering both in the leaves and at the shoot meristem, and integrate TPS1 into the existing genetic framework of flowering-time control.
Proceedings of the National Academy of Sciences of the United States of America | 2009
D. H. P. Barratt; Paul Derbyshire; Kim Findlay; Marilyn J. Pike; N. Wellner; John E. Lunn; Regina Feil; C. Simpson; A. J. Maule; Alison M. Smith
The entry of carbon from sucrose into cellular metabolism in plants can potentially be catalyzed by either sucrose synthase (SUS) or invertase (INV). These 2 routes have different implications for cellular metabolism in general and for the production of key metabolites, including the cell-wall precursor UDPglucose. To examine the importance of these 2 routes of sucrose catabolism in Arabidopsis thaliana (L.), we generated mutant plants that lack 4 of the 6 isoforms of SUS. These mutants (sus1/sus2/sus3/sus4 mutants) lack SUS activity in all cell types except the phloem. Surprisingly, the mutant plants are normal with respect to starch and sugar content, seed weight and lipid content, cellulose content, and cell-wall structure. Plants lacking the remaining 2 isoforms of SUS (sus5/sus6 mutants), which are expressed specifically in the phloem, have reduced amounts of callose in the sieve plates of the sieve elements. To discover whether sucrose catabolism in Arabidopsis requires INVs rather than SUSs, we further generated plants deficient in 2 closely related isoforms of neutral INV predicted to be the main cytosolic forms in the root (cinv1/cinv2 mutants). The mutant plants have severely reduced growth rates. We discuss the implications of these findings for our understanding of carbon supply to the nonphotosynthetic cells of plants.
Plant Cell and Environment | 2009
Yves Gibon; Eva-Theresa Pyl; Ronan Sulpice; John E. Lunn; Melanie Höhne; Manuela Günther; Mark Stitt
Arabidopsis was grown in a 12, 8, 4 or 3 h photoperiod to investigate how metabolism and growth adjust to a decreased carbon supply. There was a progressive increase in the rate of starch synthesis, decrease in the rate of starch degradation, decrease of malate and fumarate, decrease of the protein content and decrease of the relative growth rate. Carbohydrate and amino acids levels at the end of the night did not change. Activities of enzymes involved in photosynthesis, starch and sucrose synthesis and inorganic nitrogen assimilation remained high, whereas five of eight enzymes from glycolysis and organic acid metabolism showed a significant decrease of activity on a protein basis. Glutamate dehydrogenase activity increased. In a 2 h photoperiod, the total protein content and most enzyme activities decreased strongly, starch synthesis was inhibited, and sugars and amino acids levels rose at the end of the night and growth was completely inhibited. The rate of starch degradation correlated with the protein content and the relative growth rate across all the photoperiod treatments. It is discussed how a close coordination of starch turnover, the protein content and growth allows Arabidopsis to avoid carbon starvation, even in very short photoperiods.
Plant Journal | 2010
Mark Stitt; John E. Lunn
Historically speaking, Arabidopsis was not the plant of choice for investigating photosynthesis, with physiologists and biochemists favouring other species such as Chlorella, spinach and pea. However, its inherent advantages for forward genetics rapidly led to its adoption for photosynthesis research. In the last ten years, the availability of the Arabidopsis genome sequence - still the gold-standard for plant genomes - and the rapid expansion of genetic and genomic resources have further increased its importance. Research in Arabidopsis has not only provided comprehensive information about the enzymes and other proteins involved in photosynthesis, but has also allowed transcriptional responses, protein levels and compartmentation to be analysed at a global level for the first time. Emerging technical and theoretical advances offer another leap forward in our understanding of post-translational regulation and the control of metabolism. To illustrate the impact of Arabidopsis, we provide a historical review of research in primary photosynthetic metabolism, highlighting the role of Arabidopsis in elucidation of the pathway of photorespiration and the regulation of RubisCO, as well as elucidation of the pathways of starch turnover and studies of the significance of starch for plant growth.
Plant Journal | 2014
John E. Lunn; Ines Delorge; Carlos M. Figueroa; Patrick Van Dijck; Mark Stitt
Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.
The Plant Cell | 2013
Marek Szecowka; Robert Heise; Takayuki Tohge; Adriano Nunes-Nesi; Daniel Vosloh; Jan Huege; Regina Feil; John E. Lunn; Zoran Nikoloski; Mark Stitt; Alisdair R. Fernie; Stéphanie Arrivault
Kinetic flux profiling has been extensively used in unicellular bacterial systems to study primary metabolism. We present a framework for its use in estimating photosynthetic fluxes in land plants. The resulting flux estimates are benchmarked against published flux estimates. Photosynthesis is the basis for life, and its optimization is a key biotechnological aim given the problems of population explosion and environmental deterioration. We describe a method to resolve intracellular fluxes in intact Arabidopsis thaliana rosettes based on time-dependent labeling patterns in the metabolome. Plants photosynthesizing under limiting irradiance and ambient CO2 in a custom-built chamber were transferred into a 13CO2-enriched environment. The isotope labeling patterns of 40 metabolites were obtained using liquid or gas chromatography coupled to mass spectrometry. Labeling kinetics revealed striking differences between metabolites. At a qualitative level, they matched expectations in terms of pathway topology and stoichiometry, but some unexpected features point to the complexity of subcellular and cellular compartmentation. To achieve quantitative insights, the data set was used for estimating fluxes in the framework of kinetic flux profiling. We benchmarked flux estimates to four classically determined flux signatures of photosynthesis and assessed the robustness of the estimates with respect to different features of the underlying metabolic model and the time-resolved data set.
Plant Physiology | 1997
Steven P. King; John E. Lunn; Robert T. Furbank
Little biochemical information is available on carbohydrate metabolism in developing canola (Brassica napus L.) silique (pod) wall and seed tissues. This research examines the carbohydrate contents and sucrose (Suc) metabolic enzyme activities in different aged silique wall and seed tissues during oil filling. The silique wall partitioned photosynthate into Suc over starch and predominantly accumulated hexose. The silique wall hexose content and soluble acid invertase activity rapidly fell as embryos progressed from the early- to late-cotyledon developmental stages. A similar trend was not evident for alkaline invertase, Suc synthase (SuSy), and Suc-phosphate synthase. Silique wall SuSy activities were much higher than source leaves at all times and may serve to supply the substrate for secondary cell wall thickening. In young seeds starch was the predominant accumulated carbohydrate over the sampled developmental range. Seed hexose levels dropped as embryos developed from the early- to midcotyledon stage. Hexose and starch were localized to the testa or liquid endosperm, whereas Suc was evenly distributed among seed components. With the switch to oil accumulation, seed SuSy activity increased by 3.6-fold and soluble acid invertase activity decreased by 76%. These data provide valuable baseline knowledge for the genetic manipulation of canola seed carbon partitioning.
Current Opinion in Plant Biology | 2003
John E. Lunn; Elspeth MacRae
Sucrose is universal in plants and fulfils many roles: transport sugar, storage reserve, compatible solute and signal compound. Consequently, sucrose synthesis is highly regulated, with much of the control operating at the first step in the committed pathway, which is catalysed by sucrose-phosphate synthase (SPS). The discovery of at least three SPS gene families in plants has added a further layer of complexity to an already complicated picture involving transcriptional, allosteric and post-translational control of this enzymes activity. After years of neglect, the gene encoding the last enzyme in the pathway, sucrose-phosphatase (SPP), has finally been cloned, revealing that SPS contains an SPP-like domain at the carboxy-terminus, to which SPP might bind. This has reinvigorated the search for an SPS-SPP complex, and has hinted at further complexities to be unravelled in the control of sucrose synthesis in plants.