John F. Baines
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John F. Baines.
Gut | 2011
Ateequr Rehman; Christian Sina; Olga Gavrilova; Robert Häsler; Stephan J. Ott; John F. Baines; Stefan Schreiber; Philip Rosenstiel
Objective The mammalian commensal gut microbiota is highly diverse and displays an individual-specific composition determined by host genotype and environmental factors. The temporal development of host–microbial homeostasis in the digestive tract is recognised as a major function of the immune system. However, the underlying cellular and molecular mechanisms are just beginning to come to light. Nucleotide-binding, oligomerisation domain 2 (NOD2) recognises bacterial muramyl dipeptide and is regarded as a pivotal sensor molecule of the intestinal barrier. The aim of this study was to investigate its influence on the development and composition of the intestinal microbiota using a Nod2-deficient mouse model. Methods The dynamics of faecal and ileal microbial composition were investigated in Nod2+/+and Nod2−/− mice on a C57BL/6J background. We assessed microbial diversity and composition using 16S ribosomal RNA gene-based clone library sequencing and high throughput pyrosequencing and quantified the observed changes by real-time PCR. Changes in the major bacterial phyla were investigated in human samples by quantitative real-time PCR. Results We found that adult Nod2-deficient mice display a substantially altered microbial community structure and a significantly elevated bacterial load in their faeces and terminal ileum compared to their wild-type counterparts. Interestingly, we demonstrate that these findings are also present in weaning mice, indicating a profound influence of Nod2 on the early development and composition of the intestinal microbiota. We demonstrate that NOD2 genotypes also influence the microbial composition in humans. Conclusions Our results point to an essential role of Nod2 for the temporal development and composition of the host microbiota, both in mice and in humans, which may contribute to the complex role of NOD2 for the aetiopathogenesis of Crohns disease.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Philipp Rausch; Ateequr Rehman; Sven Künzel; Robert Häsler; Stephan J. Ott; Stefan Schreiber; Philip Rosenstiel; Andre Franke; John F. Baines
The FUT2 (Secretor) gene is responsible for the presence of ABO histo-blood group antigens on the gastrointestinal mucosa and in bodily secretions. Individuals lacking a functional copy of FUT2 are known as “nonsecretors” and display an array of differences in susceptibility to infection and disease, including Crohn disease. To determine whether variation in resident microbial communities with respect to FUT2 genotype is a potential factor contributing to susceptibility, we performed 454-based community profiling of the intestinal microbiota in a panel of healthy subjects and Crohn disease patients and determined their genotype for the primary nonsecretor allele in Caucasian populations, W143X (G428A). Consistent with previous studies, we observe significant deviations in the microbial communities of individuals with Crohn disease. Furthermore, the FUT2 genotype explains substantial differences in community composition, diversity, and structure, and we identified several bacterial species displaying disease-by-genotype associations. These findings indicate that alterations in resident microbial communities may in part explain the variety of host susceptibilities surrounding nonsecretor status and that FUT2 is an important genetic factor influencing host–microbial diversity.
Journal of Hepatology | 2012
Trine Folseraas; Espen Melum; Philipp Rausch; Brian D. Juran; Eva Ellinghaus; Alexey Shiryaev; Jon K. Laerdahl; David Ellinghaus; Christoph Schramm; Tobias J. Weismüller; Daniel Gotthardt; Johannes R. Hov; O. P. F. Clausen; Rinse K. Weersma; Marcel Janse; Kirsten Muri Boberg; Einar Björnsson; Hanns-Ulrich Marschall; Isabelle Cleynen; Philip Rosenstiel; Kristian Holm; Andreas Teufel; Christian Rust; Christian Gieger; H-Erich Wichmann; Annika Bergquist; Euijung Ryu; Cyriel Y. Ponsioen; Heiko Runz; Martina Sterneck
BACKGROUND & AIMS A limited number of genetic risk factors have been reported in primary sclerosing cholangitis (PSC). To discover further genetic susceptibility factors for PSC, we followed up on a second tier of single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS). METHODS We analyzed 45 SNPs in 1221 PSC cases and 3508 controls. The association results from the replication analysis and the original GWAS (715 PSC cases and 2962 controls) were combined in a meta-analysis comprising 1936 PSC cases and 6470 controls. We performed an analysis of bile microbial community composition in 39 PSC patients by 16S rRNA sequencing. RESULTS Seventeen SNPs representing 12 distinct genetic loci achieved nominal significance (p(replication) <0.05) in the replication. The most robust novel association was detected at chromosome 1p36 (rs3748816; p(combined)=2.1 × 10(-8)) where the MMEL1 and TNFRSF14 genes represent potential disease genes. Eight additional novel loci showed suggestive evidence of association (p(repl) <0.05). FUT2 at chromosome 19q13 (rs602662; p(comb)=1.9 × 10(-6), rs281377; p(comb)=2.1 × 10(-6) and rs601338; p(comb)=2.7 × 10(-6)) is notable due to its implication in altered susceptibility to infectious agents. We found that FUT2 secretor status and genotype defined by rs601338 significantly influence biliary microbial community composition in PSC patients. CONCLUSIONS We identify multiple new PSC risk loci by extended analysis of a PSC GWAS. FUT2 genotype needs to be taken into account when assessing the influence of microbiota on biliary pathology in PSC.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sören Franzenburg; Jonas Walter; Sven Künzel; Jun Wang; John F. Baines; Thomas C. G. Bosch; Sebastian Fraune
Significance Animals form functional unities with communities of microbes. Often, these bacterial communities are highly specific to host species and resemble host phylogeny. But which factors determine community membership? Which host-factors are capable of selecting suitable bacteria by inhibiting colonization by potential foreign colonizers? In this study, we show that animals express a species-specific repertoire of antimicrobial peptides, which supports and maintains a species-specific bacterial community. Loss-of-function experiments showed that antimicrobial peptide composition is a predictor for bacterial colonization. Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations.
Nature Genetics | 2016
Jun Wang; Louise B. Thingholm; Jurgita Skiecevičienė; Philipp Rausch; Martin Kummen; Johannes R. Hov; Frauke Degenhardt; Femke-Anouska Heinsen; Malte C. Rühlemann; Silke Szymczak; Kristian Holm; Tonu Esko; Jun Sun; Mihaela Pricop-Jeckstadt; Samer Al-Dury; Pavol Bohov; Jörn Bethune; Felix Sommer; David Ellinghaus; Rolf K. Berge; Matthias Hübenthal; Manja Koch; Karin Schwarz; Gerald Rimbach; Patricia Hübbe; Wei-Hung Pan; Raheleh Sheibani-Tezerji; Robert Häsler; Philipp Rosenstiel; Mauro D'Amato
Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr−/− mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10−8) associations at multiple additional loci identify other important points of host–microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.
bioRxiv | 2016
Kevin R. Theis; Nolwenn M. Dheilly; Jonathan L. Klassen; Robert M. Brucker; John F. Baines; Thomas C. G. Bosch; John F. Cryan; Scott F. Gilbert; Charles J. Goodnight; Elisabeth A. Lloyd; Jan Sapp; Philippe Vandenkoornhuyse; Ilana Zilber-Rosenberg; Eugene Rosenberg; Seth R. Bordenstein
Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. ABSTRACT Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. For instance, critiquing the hologenome concept is not synonymous with critiquing coevolution, and arguing that an entity is not a primary unit of selection dismisses the fact that the hologenome concept has always embraced multilevel selection. Holobionts and hologenomes are incontrovertible, multipartite entities that result from ecological, evolutionary, and genetic processes at various levels. They are not restricted to one special process but constitute a wider vocabulary and framework for host biology in light of the microbiome.
PLOS ONE | 2013
Fabian Staubach; John F. Baines; Sven Künzel; Elisabeth Bik; Dmitri A. Petrov
The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila–associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.
Genetics | 2007
John F. Baines; Bettina Harr
Contrasting patterns of X-linked vs. autosomal diversity may be indicative of the mode of selection operating in natural populations. A number of observations have shown reduced X-linked (or Z-linked) diversity relative to autosomal diversity in various organisms, suggesting a large impact of genetic hitchhiking. However, the relative contribution of other forces such as population bottlenecks, variation in reproductive success of the two sexes, and differential introgression remains unclear. Here, we survey 13 loci, 6 X-linked and 7 autosomal, in natural populations of the house mouse (Mus musculus) subspecies complex. We studied seven populations of three different subspecies, the eastern house mouse M. musculus castaneus, the central house mouse M. m. musculus, and the western house mouse M. m. domesticus, including putatively ancestral and derived populations for each. All populations display lower diversity on the X chromosomes relative to autosomes, and this effect is most pronounced in derived populations. To assess the role of demography, we fit the demographic parameters that gave the highest likelihood of the data using coalescent simulations. We find that the reduction in X-linked diversity is too large to be explained by a simple demographic model in at least two of four derived populations. These observations are also not likely to be explained by differences in reproductive success between males and females. They are consistent with a greater impact of positive selection on the X chromosome, and this is supported by the observation of an elevated KA and elevated KA/KS ratios on the rodent X chromosome. A second contribution may be that the X chromosome less readily introgresses across subspecies boundaries.
Molecular Ecology | 2013
Miriam Linnenbrink; Jun Wang; Emilie A. Hardouin; Sven Künzel; Dirk Metzler; John F. Baines
The microbial communities inhabiting the mammalian intestinal tract play an important role in diverse aspects of host biology. However, little is known regarding the forces shaping variation in these communities and their influence on host fitness. To shed light on the contributions of host genetics, transmission and geography to diversity in microbial communities between individuals, we performed a survey of intestinal microbial communities in a panel of 121 house mice derived from eight locations across Western Europe using pyrosequencing of the bacterial 16S rRNA gene. The host factors studied included population structure estimated by microsatellite loci and mitochondrial DNA, genetic distance and geography. To determine whether host tissue (mucosa)‐associated communities display properties distinct from those of the lumen, both the caecal mucosa and contents were examined. We identified Bacteroides, Robinsoniella and Helicobacter as the most abundant genera in both the caecal content and mucosa‐associated communities of wild house mice. Overall, we found geography to be the most significant factor explaining patterns of diversity in the intestinal microbiota, with a comparatively weaker influence of host population structure and genetic distance. Furthermore, the influence of host genetic distance was limited to the mucosa communities, consistent with this environment being more intimately coupled to the host.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Sören Franzenburg; Sebastian Fraune; Sven Künzel; John F. Baines; Tomislav Domazet-Lošo; Thomas C. G. Bosch
Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.