Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John F. Huntley is active.

Publication


Featured researches published by John F. Huntley.


Vaccine | 2009

Evaluation of immune responses and protective efficacy in a goat model following immunization with a coctail of recombinant antigens and a polyprotein of Mycobacterium avium subsp. paratuberculosis

Kumanan Kathaperumal; Vijayarani Kumanan; Sean P. McDonough; Li-Hsuen Chen; Sung-Un Park; Maria A S Moreira; Bruce Akey; John F. Huntley; Chao-Fu Chang; Yung-Fu Chang

The protective efficacy of four recombinant antigens (85A, 85B, superoxide dismutase [SOD], and a fusion polypeptide [Map74F]) of Mycobacterium avium subsp. paratuberculosis (MAP) along with the adjuvant dimethydioctadecyl ammonium bromide (DDA) was assessed in a goat challenge model. Animals were immunized with the four antigens with adjuvant DDA (Group I, eight goat kids) or without the adjuvant (Group II, eight goat kids) or adjuvant only (Group III, nine goat kids). Animals were boostered 3 weeks after the primary vaccination and challenged 3 weeks after the booster. Significant antigen-specific lymphoproliferation was observed in the immunized animals 3 weeks after the booster immunization. This response increased further at 4 weeks after the booster. Similarly, antigen-specific IFN-gamma responses increased in the immunized animals 3 weeks after the booster. The response was significantly higher for 85A and Map74F at 10 weeks after primary vaccination (APV) in Group I animals compared to the other two groups. CD4+ T-cell populations were higher in the vaccinated animals from 6 to 10 weeks APV than those of the control animals. A significant increase in recombinant antigen-specific IFN-gamma gene expression was detected in the vaccinated animals. At necropsy (38 weeks APV), our multicomponent subunit vaccine imparted a significant protection in terms of reduction of MAP burden in target organs as compared to sham-immunized goats. This study indicates that our multicomponent subunit vaccine induced a good Th1 response and conferred protection against MAP infection in a goat challenge model.


Vaccine | 2008

Vaccination with recombinant Mycobacterium avium subsp. paratuberculosis proteins induces differential immune responses and protects calves against infection by oral challenge

Kumanan Kathaperumal; Sung-Un Park; Sean P. McDonough; Susan M. Stehman; Bruce Akey; John F. Huntley; Susan Wong; Chao-Fu Chang; Yung-Fu Chang

We previously reported the in vitro cellular immune responses to recombinant antigens (rAgs) of Mycobacterium avium subsp. paratuberculosis (MAP). Here we report the differential immune responses and protective efficacy of four rAgs of MAP (85A, 85B, 85C, and superoxide dismutase (SOD)) used with two adjuvants (monophosphoryl lipid A (MPLA) containing synthetic trehalose dicorynomycolate, cell wall skeleton (MPLA) and bovine IL-12), against MAP challenge in calves. Group I was administered the four rAgs with MPLA and IL-12. Group II was administered the four rAgs and MPLA. Group III received MPLA and IL-12, and Group IV MPLA. rAgs induced significant lymphoproliferative responses in vaccinated animals (Groups I and II). All the rAgs induced significant IFN-gamma production from 11 to 23 wk after primary vaccination (APV), except for SOD. Significant increases were noted in CD3(+), CD4(+), CD8(+), CD21(+), CD25(+), and gammadelta(+) cells against all four rAgs in vaccinated animals. rAg-specific expression of IL-2, IL-12p40, IFN-gamma and TNF-alpha was significantly higher in the two vaccinated groups. Culture results found 4/8 animals in Group I, 3/8 animals in Group II, and 3/4 animals in Groups III and IV were positive for MAP in one or more tissues. Among the seven positive animals in Groups I and II, all but one had had <10CFU. Isolation was confined to one tissue in these animals, except in one animal in which MAP was isolated from two tissues. In the control groups (III and IV), MAP was cultured from up to five different tissues with >250CFU. Preliminary data from this study indicates that all four rAgs induced a good Th1 response and conferred protection against MAP infection in calves.


Vaccine | 2008

Immunization with a DNA vaccine cocktail induces a Th1 response and protects mice against Mycobacterium avium subsp. paratuberculosis challenge

Sung-Un Park; Kumanan Kathaperumal; Sean P. McDonough; Bruce Akey; John F. Huntley; John P. Bannantine; Yung-Fu Chang

Several antigens of Mycobacterium avium subsp. paratuberculosis have been studied as vaccine components and their immunogenicity has been evaluated. Previously, we reported that 85 antigen complex (85A, 85B, and 85C), superoxide dismutase (SOD), and 35kDa protein could induce significant lymphocyte proliferation as well as the elaboration of Th1-associated cytokines including interferon gamma (IFN-gamma), interleukin-2 (IL-2), IL-12 and tumor necrosis factor alpha (TNF-alpha). Based on these results, we cloned and expressed 85A, 85B, 85C, SOD, and 35kDa-protein genes into the eukaryotic expression plasmid pVR1020. C57BL/6 mice were immunized three times intramuscularly with the recombinant DNA cocktail and pVR1020 DNA alone as control. A significant reduction in the bacterial burden in the spleen and liver of mice immunized with the DNA cocktail as compared to the vector control group was found. Also, the relative severity of the liver and spleen histopathology paralleled the MAP culture results, more granulomas and acid-fast bacilli in the vector control animals. Moreover, mice immunized with the DNA cocktail developed both CD4(+) and CD8(+) T cell responses to the recombinant antigens and showed significant lymphocyte proliferation. The Th1 response related cytokine (IFN-gamma) levels increased in splenocytes obtained from immunized animals. These results indicate that the use of a recombinant DNA vaccine can provide protective immunity against mycobacterial infection by inducing a Th1 response.


BMC Genomics | 2010

Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis

Stewart T. G. Burgess; David Frew; Francesca Nunn; Craig A Watkins; Tom N. McNeilly; Alasdair J. Nisbet; John F. Huntley

BackgroundInfestation of ovine skin with the ectoparasitic mite Psoroptes ovis results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the in vivo skin response to infestation with P. ovis to gain a clearer understanding of the mechanisms and signalling pathways involved.ResultsInfestation with P. ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (IL1A, IL1B, IL6, IL8 and TNF) and factors involved in immune cell activation and recruitment (SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 and CXCL2). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.ConclusionsThis study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to P. ovis, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to P. ovis, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.


Vaccine | 2008

Immune responses in mice to Mycobacterium avium subsp. paratuberculosis following vaccination with a novel 74F recombinant polyprotein.

Li-Hsuen Chen; Kumanan Kathaperumal; Ching-Juo Huang; Sean P. McDonough; Susan M. Stehman; Bruce Akey; John F. Huntley; John P. Bannantine; Chao-Fu Chang; Yung-Fu Chang

Johnes disease (JD) is a chronic infectious disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Here, we report the cloning and expression of a 74kDa recombinant polyprotein (Map74F) and its protective efficacy against MAP infection in mice. Map74F was generated by the sequential linkage of the ORFs of the approximately 17.6-kDa C-terminal fragment of Map3527 to the full-length ORF of Map1519, followed at the C-terminus with approximately 14.6-kDa N-terminal portion of Map3527. Mice immunized with Map74F had a significant IgG1 response but not IgG2a. In immunized animals, the IgG1/IgG2a ratio increased until 4 weeks after MAP challenge. The ratio decreased from 8 weeks indicating a shift to a Th1 response. Antigen specific IFN-gamma response, CD3+ and CD4+ T cells increased significantly in immunized mice. Following challenge, MAP burden was significantly lower in liver, spleen and mesenteric lymph nodes of immunized animals compared to control animals indicating protection against MAP infection. This was further evident by the improved liver and spleen pathology of the immunized animals, which had fewer granulomas and lower numbers of acid-fast bacilli. Results of this study indicated that immunization of mice with Map74F protected mice against MAP infection.


Parasites & Vectors | 2012

The use of a Psoroptes ovis serodiagnostic test for the analysis of a natural outbreak of sheep scab

Stewart T. G. Burgess; G.T. Innocent; Francesca Nunn; David Frew; Fiona Kenyon; Alasdair J. Nisbet; John F. Huntley

BackgroundSheep scab is a highly contagious disease of sheep caused by the ectoparasitic mite Psoroptes ovis. The disease is endemic in the UK and has significant economic impact through its effects on performance and welfare. Diagnosis of sheep scab is achieved through observation of clinical signs e.g. itching, pruritis and wool loss and ultimately through the detection of mites in skin scrapings. Early stages of infestation are often difficult to diagnose and sub-clinical animals can be a major factor in disease spread. The development of a diagnostic assay would enable farmers and veterinarians to detect disease at an early stage, reducing the risk of developing clinical disease and limiting spread.MethodsSerum samples were obtained from an outbreak of sheep scab within an experimental flock (n = 480 (3 samples each from 160 sheep)) allowing the assessment, by ELISA of sheep scab specific antibody prior to infestation, mid-outbreak (combined with clinical assessment) and post-treatment.ResultsAnalysis of pre-infestation samples demonstrated low levels of potential false positives (3.8%). Of the 27 animals with clinical or behavioural signs of disease 25 tested positive at the mid-outbreak sampling period, however, the remaining 2 sheep tested positive at the subsequent sampling period. Clinical assessment revealed the absence of clinical or behavioural signs of disease in 132 sheep, whilst analysis of mid-outbreak samples showed that 105 of these clinically negative animals were serologically positive, representing potential sub-clinical infestations.ConclusionsThis study demonstrates that this ELISA test can effectively diagnose sheep scab in a natural outbreak of disease, and more importantly, highlights its ability to detect sub-clinically infested animals. This ELISA, employing a single recombinant antigen, represents a major step forward in the diagnosis of sheep scab and may prove to be critical in any future control program.


Vaccine | 2010

IgA and IgG antibody responses following systemic immunization of cattle with native H7 flagellin differ in epitope recognition and capacity to neutralise TLR5 signalling

Tom N. McNeilly; Mairi C. Mitchell; Alasdair J. Nisbet; Sean P. McAteer; Clett Erridge; Neil F. Inglis; David George Emslie Smith; J. Christopher Low; David L. Gally; John F. Huntley; Arvind Mahajan

Systemic immunization of cattle with H7 flagellin results in induction of both H7-specific IgA and IgG antibodies but only partially protects against subsequent colonization with Escherichia coli O157:H7. Recent studies indicate that anti-flagellin antibodies directed against TLR5 binding domains located in the conserved N- and C-terminal domains of flagellin can neutralise TLR5 activation and impair vaccine efficacy. In the current study we determined whether systemic immunization of cattle with H7 flagellin induces antibodies capable of interfering with flagellin-mediated TLR5 activation. Both anti-H7 IgG1 and IgG2 but not IgA antibodies recognised epitopes within the conserved N- and C-terminal domains of H7 flagellin, and purified H7-specific IgG but not IgA was capable of inhibiting H7-mediated TLR5 activation in vitro. These results suggest that (i) IgA and IgG isotypes originated from different populations of B cells and (ii) systemically induced H7-specific IgG but not IgA may impair innate immune responses to E. coli O157:H7 via neutralisation of TLR5 activation and subsequently reduce vaccine efficacy.


Parasitology | 2012

Assessment of cathepsin D and L-like proteinases of poultry red mite, Dermanyssus gallinae (De Geer), as potential vaccine antigens.

Kathryn Bartley; John F. Huntley; Harry W. Wright; Mintu Nath; Alasdair J. Nisbet

Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems.


Molecular and Cellular Probes | 2012

Recent developments in the diagnosis of ectoparasite infections and disease through a better understanding of parasite biology and host responses.

Beth Wells; Stewart T. G. Burgess; Tom N. McNeilly; John F. Huntley; Alasdair J. Nisbet

Some conventional methods of diagnosis of ectoparasite infections can have low sensitivity and/or specificity. In addition, early infestations, sub-clinical and carrier hosts often go un-diagnosed, allowing infestations to spread. This review focuses on the important ectoparasites of human, livestock and companion animals for which improved diagnostic tools are either already in use, or in development. These advances in diagnostic technologies have resulted in improved treatment, control and preventative strategies for many ectoparasitic diseases. Immunodiagnostic methods have had a large impact, with the emergence of highly sensitive and specific enzyme-linked immunosorbent assays (ELISAs) for sarcoptic and psoroptic mange, with further improved tests in development. In the present review, the advantages and limitations of such tests are discussed and the potential for future development explored. The increasing use of molecular tools, for example, PCR and other molecular methods, has improved our understanding of the epidemiology of ectoparasitic diseases, with practical consequences for community-based control programmes. Recently, the identification of specific signalling pathways during the host response to ectoparasites has led to the identification of disease biomarkers which, along with new technologies, such as multiplexed assays and microfluidic platforms, could lead to more cost-effective, rapid and accurate diagnosis of infectious diseases.


Veterinary Immunology and Immunopathology | 2011

Identification of CD4+CD25high Foxp3+ T cells in ovine peripheral blood

Mara Rocchi; Sean Wattegedera; David Frew; Gary Entrican; John F. Huntley; Tom N. McNeilly

Regulatory T cells (Treg) are an important subset of T lymphocytes which play a key role in maintaining peripheral immunological tolerance. The most studied subpopulation of Treg in mice and humans are natural Treg, which differentiate in the thymus and are identified by expression of CD4, high levels of IL-2Rα (CD25), and forkhead box P3 (Foxp3), a transcription factor intimately associated with Treg function. We and others have previously identified Foxp3(+) T cells in ovine tissue, suggesting that Treg exist in this species. However, the existence of putative natural Treg in sheep, as identified by co-expression of CD4, CD25 and Foxp3, has yet to be determined. In this study we demonstrate that the anti-rat/mouse Foxp3 monoclonal antibody FJK-16s cross-reacts with ovine Foxp3. Using a transfected Chinese hamster ovary cell line that constitutively expresses recombinant ovine Foxp3 as a positive control, we have developed a sensitive triple-labelling flow cytometry protocol to simultaneously label CD4, CD25 and Foxp3. We demonstrate that Foxp3(+) T lymphocytes exist in ovine peripheral blood, and that the majority of Foxp3 expression occurs within the CD4(+)CD25(hi) population. These results are consistent with those seen in other mammalian species and indicate that putative natural Treg exist in sheep.

Collaboration


Dive into the John F. Huntley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge