Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John F. Valliere-Douglass is active.

Publication


Featured researches published by John F. Valliere-Douglass.


Analytical Chemistry | 2012

Native intact mass determination of antibodies conjugated with monomethyl Auristatin E and F at interchain cysteine residues.

John F. Valliere-Douglass; William A. McFee; Oscar Salas-Solano

We present here a method for the rapid determination of the intact mass of noncovalently associated antibody heavy chains (HC) and light chains (LC) which result from the attachment of drug conjugates to interchain cysteine residues. By analyzing the antibody-drug conjugate (ADC) using native desalting conditions, we maintain the intact bivalent structure of the ADC, which ordinarily would decompose as a consequence of denaturing chromatographic conditions typically used for liquid chromatographic-mass spectrometric (LC-MS) analysis. The mass of the desalted ADC is subsequently determined using standard desolvation and ionization conditions. Methods presented previously in the literature for analyzing interchain cysteinyl-linked ADCs are either not amenable to online mass spectrometry or result in the denaturing dissociation of conjugated HC and LC during chromatographic separation and subsequent mass measurement. We have avoided this outcome with our method and have successfully and routinely obtained intact mass measurement of IgG1 mAbs conjugated with maleimidocaproyl-monomethyl Auristatin F (mcMMAF) and valine-citrulline-monomethyl Auristatin E (vcMMAE) at interchain cysteine residues. Our results thus represent the first reported direct measurement of the intact mass of an ADC conjugated at interchain cysteine residues.


Journal of Pharmaceutical Sciences | 2009

Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain

Boxu Yan; Sean Steen; David M. Hambly; John F. Valliere-Douglass; Tim Vanden Bos; Scott Smallwood; Zac Yates; Thomas Arroll; Yihong Han; Himanshu S. Gadgil; Ramil F. Latypov; Alison Wallace; Aiching Lim; Gerd R. Kleemann; Weichun Wang; Alain Balland

We investigated the formation and stability of succinimide, an intermediate of deamidation events, in recombinant monoclonal antibodies (mAbs). During the course of an analytical development study of an IgG1 mAbs, we observed that a specific antibody population could be separated from the main product by cation-exchange (CEX) chromatography. The cell-based bioassay measured a approximately 70% drop in potency for this fraction. Liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS) and tandem mass spectrometry (LC-MS/MS) analyses showed that the modified CEX fraction resulted from the formation of a succinimide intermediate at Asn 55 in the complementarity determining region (CDR) of the heavy chain. Biacore assay revealed a approximately 50% decrease in ligand binding activity for the succinimide-containing Fab with respect to the native Fab. It was found that the succinimide form existed as a stable intermediate with a half-life of approximately 3 h at 37 degrees C and pH 7.6. Stress studies indicated that mildly acidic pH conditions (pH 5) favored succinimide accumulation, causing a gradual loss in potency. Hydrolysis of the succinimide resulted in a further drop in potency. The implications of the succinimide formation at Asn 55, a highly conserved residue among IgG1 (mAbs), are discussed.


Analytical Chemistry | 2010

Resolving disulfide structural isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry.

Dhanashri Bagal; John F. Valliere-Douglass; Alain Balland; Paul D. Schnier

Recombinant monoclonal antibodies are an important class of therapeutic agents that have found widespread use for the treatment of many human diseases. Here, we have examined the utility of ion mobility mass spectrometry (IMMS) for the rapid characterization of disulfide variants in intact IgG2 monoclonal antibodies. It is shown that IMMS reveals 2 to 3 gas-phase conformer populations for IgG2s. In contrast, a single gas-phase conformer is revealed using IMMS for both an IgG1 antibody and a Cys-232 --> Ser mutant IgG2, both of which are homogeneous with respect to disulfide bonding. This provides strong evidence that the observed IgG2 gas-phase conformers are related to disulfide bond heterogeneity. Additionally, IMMS analysis of redox enriched disulfide isoforms allows assignment of the mobility peaks to established disulfide bonding patterns. These data clearly illustrate how IMMS can be used to quickly provide information on the higher order structure of antibody therapeutics.


Journal of Biological Chemistry | 2010

Glutamine-linked and Non-consensus Asparagine-linked Oligosaccharides Present in Human Recombinant Antibodies Define Novel Protein Glycosylation Motifs

John F. Valliere-Douglass; Catherine M. Eakin; Alison Wallace; Randal R. Ketchem; Wesley Wang; Michael J. Treuheit; Alain Balland

We report the presence of oligosaccharide structures on a glutamine residue present in the VL domain sequence of a recombinant human IgG2 molecule. Residue Gln-106, present in the QGT sequence following the rule of an asparagine-linked consensus motif, was modified with biantennary fucosylated oligosaccharide structures. In addition to the glycosylated glutamine, analysis of a lectin-enriched antibody population showed that 4 asparagine residues: heavy chain Asn-162, Asn-360, and light chain Asn-164, both of which are present in the IgG1 and IgG2 constant domain sequences, and Asn-35, which was present in CDRL1, were also modified with oligosaccharide structures at low levels. The primary sequences around these modified residues do not adhere to the N-linked consensus sequon, NX(S/T). Modeling of these residues from known antibody crystal structures and sequence homology comparison indicates that non-consensus glycosylation occurs on Asn residues in the context of a reverse consensus motif (S/T)XN located on highly flexile turns within 3 residues of a conformational change. Taken together our results indicate that protein glycosylation is governed by more diversified requirements than previously appreciated.


Analytical Chemistry | 2014

Conformation and dynamics of interchain cysteine-linked antibody-drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry.

Lucy Yan Pan; Oscar Salas-Solano; John F. Valliere-Douglass

Antibody-drug conjugates (ADCs) are protein therapeutics in which a target specific monoclonal antibody (mAb) is conjugated with drug molecules. The manufacturing of ADCs involves additional conjugation steps, which are carried out on the parent mAbs, and it is important to evaluate how the drug conjugation process impacts the conformation and dynamics of the mAb. Here, we present a comparative study of interchain cysteine linked IgG1 ADCs and the corresponding mAb by hydrogen/deuterium exchange mass spectrometry (HDX-MS). We found that ∼90% of the primary sequence of the ADC conjugated with either monomethyl auristatin E or F (vcMMAE/mcMMAF) displayed the same HDX kinetics as the mAb, indicating the ADCs and mAbs share very similar conformation and dynamics in solution. Minor increases in HDX kinetic rates were observed in two Fc regions in the ADCs relative to the mAb which indicated that both regions become more structurally dynamic and/or more solvent-accessible in the ADCs. The findings led to a subsequent inquiry into whether the local conformational changes were due to the presence of drugs on the interchain cysteine residues or the absence of intact interchain disulfides or both. To address this question, a side-by-side HDX comparison of ADCs, mAbs, reduced mAbs (containing 8 reduced interchain cysteine thiols), and partially reduced mAbs (conjugation process intermediate) was performed. Our results indicated that the slight increase in conformational dynamics detected at the two regions in the ADCs was due to the absence of intact interchain disulfide bonds and not the presence of vcMMAE or mcMMAF on the alkylated interchain cysteine residues. These results highlight the utility of HDX-MS for interrogating the higher-order structure of ADCs and other protein therapeutics.


Journal of Chromatography A | 2008

Separation of populations of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions

John F. Valliere-Douglass; Alison Wallace; Alain Balland

The following report describes the use of hydrophobic-interaction chromatography (HIC) to separate and characterize populations of monoclonal antibodies resulting from variable N- and C-terminal processing, stressed-induced covalent modifications and conformationally altered populations present in the drug product. We investigated the use of HIC to characterize heterogeneity in the intact molecule and the Fab and Fc sub-domains resulting from papain cleavage. We found that certain classes of covalent modifications to antibodies are highly amenable to HIC separation. Specific covalent modifications occurring on antibodies could be separated into pure fractions which contained unmodified, singly modified (on 1 heavy or light chain) and doubly modified (on both heavy or light chains) molecules. This report demonstrates the utility of HIC for assessing the heterogeneity, stability and, in some cases, potency of monoclonal antibodies.


Analytical Chemistry | 2014

Measurement of in Vivo Drug Load Distribution of Cysteine-Linked Antibody–Drug Conjugates Using Microscale Liquid Chromatography Mass Spectrometry

Shawna Mae Hengel; Russell J. Sanderson; John F. Valliere-Douglass; Nicole Nicholas; Chris I. Leiske; Stephen C. Alley

Analysis of samples containing intact antibody-drug conjugates (ADC) using mass spectrometry provides a direct measurement of the drug-load distribution. Once dosed, the drug load distribution changes due to a combination of biological and chemical factors. Liquid chromatography-mass spectrometry (LC-MS) methods to measure the in vivo drug load distribution have been established for ADCs containing native disulfide bonds (lysine-linked or cysteine-linked). However, because of an IgG reduction step in conjugation processes, using LC-MS to analyze intact cysteine-linked ADCs requires native conditions, thus limiting sensitivity. While this limitation has been overcome at the analytical scale, to date, these methods have not been translated to a smaller scale that is required for animal or clinical doses/sampling. In this manuscript, we describe the development of ADC specific affinity capture reagents for processing in vivo samples and optimization of native LC-MS methods at a microscale. These methods are then used to detect the changing drug load distribution over time from a set of in vivo samples, representing to our knowledge the first native mass spectra of cysteine-linked ADCs from an in vivo source.


Journal of the American Society for Mass Spectrometry | 2008

Molecular mass analysis of antibodies by on-line SEC-MS

Lowell J. Brady; John F. Valliere-Douglass; Theresa Martinez; Alain Balland

Mass analysis of recombinant protein therapeutics is an important assay for product characterization. Intact mass analysis is used to provide confirmation of proper translation of the DNA sequence and to detect the presence of post-translational modifications such as amino acid processing and glycosylation. We present here a method for the rapid mass analysis of antibodies using a polyhydroxyethyl aspartamide column operated in size-exclusion mode and coupled with ESI-MS. This method allows extremely efficient desalting of proteins under acidic conditions that are optimal for subsequent mass analysis using standard ESI conditions. Furthermore, this technique is significantly faster and more sensitive than rpHPLC methods, typically considered the standard chromatography approach for mass analysis of proteins. This method is flexible and robust, and should prove useful for applications where a combination of speed and sensitivity are required.


Journal of Biological Chemistry | 2009

Asparagine-linked Oligosaccharides Present on a Non-consensus Amino Acid Sequence in the CH1 Domain of Human Antibodies

John F. Valliere-Douglass; Paul Kodama; Mirna Mujacic; Lowell J. Brady; Wes Wang; Alison Wallace; Boxu Yan; Pranhitha Reddy; Michael J. Treuheit; Alain Balland

We report that N-linked oligosaccharide structures can be present on an asparagine residue not adhering to the consensus site motif NX(S/T), where X is not proline, described in the literature. We have observed oligosaccharides on a non-consensus asparaginyl residue in the CH1 constant domain of IgG1 and IgG2 antibodies. The initial findings were obtained from characterization of charge variant populations evident in a recombinant human antibody of the IgG2 subclass. HPLC-MS results indicated that cation-exchange chromatography acidic variant populations were enriched in antibody with a second glycosylation site, in addition to the well documented canonical glycosylation site located in the CH2 domain. Subsequent tryptic and chymotryptic peptide map data indicated that the second glycosylation site was associated with the amino acid sequence TVSWN162SGAL in the CH1 domain of the antibody. This highly atypical modification is present at levels of 0.5–2.0% on most of the recombinant antibodies that have been tested and has also been observed in IgG1 antibodies derived from human donors. Site-directed mutagenesis of the CH1 domain sequence in a recombinant-human IgG1 antibody resulted in an increase in non-consensus glycosylation to 3.15%, a greater than 4-fold increase over the level observed in the wild type, by changing the −1 and +1 amino acids relative to the asparagine residue at position 162. We believe that further understanding of the phenomenon of non-consensus glycosylation can be used to gain fundamental insights into the fidelity of the cellular glycosylation machinery.


Analytical Chemistry | 2008

Separation and characterization of an IgG2 antibody containing a cyclic imide in CDR1 of light chain by hydrophobic interaction chromatography and mass spectrometry.

John F. Valliere-Douglass; Laura Jones; Diana Shpektor; Paul Kodama; Alison Wallace; Alain Balland; Robert Bailey; Yuling Zhang

Hydrophobic interaction chromatography (HIC) was used to separate populations of recombinant IgG2 antibody that were created as a result of prolonged incubation at 40 degrees C. Antibody was separated by HIC into three major and seven minor fractions. All but one fraction was composed of antibody with distinct chemical modifications that resulted from exposure to elevated temperature. The results of intact and reduced mass analysis as well as peptide map data derived from the three major HIC fractions indicated that the antibody was being chromatographically separated into populations containing a succinimidyl intermediate in complementarity determining region 1 (CDR1) on zero, one, and two light chain arms. Lower level species purified by HIC were analyzed by intact and reduced mass analysis and laser-induced fluorescence capillary electrophoresis (CE-LIF) and consisted of an antibody that was clipped in four different places in the heavy chain as well as misfolded and aggregated antibody. The potency of the recombinant antibody containing a succinimidyl intermediate on zero, one, and two light chain arms was analyzed by LANCE binding assay and a cell based in vitro bioassay, and the occurrence of this modification on one or both light chain arms was associated with a reduction in the binding affinity of the molecule to the target by approximately 10%. We show that HIC has the unique ability as a first step purification method to separate populations of antibody which are covalently modified under stability programs. The method conditions that have been developed for the HIC assay are ideal for purifying antibodies with labile modifications for the purpose of further characterization.

Collaboration


Dive into the John F. Valliere-Douglass's collaboration.

Researchain Logo
Decentralizing Knowledge