Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John G. Aunins is active.

Publication


Featured researches published by John G. Aunins.


Current Opinion in Biotechnology | 1997

Large-scale mammalian cell culture

Wei Shou Hu; John G. Aunins

Mammalian cell culture continues to draw major research efforts. A great deal of progress has recently been made in cellular physiology, especially in factors adversely affecting cell growth or viability. Through molecular genetic manipulation, cells are more readily cultivated in a medium free of animal proteins. Achieving a high cell concentration and high viability continue to be common themes in engineering research. The need to implement a control policy for fed-batch and perfusion cultures has prompted increased efforts in process monitoring and control. Integrating these advances will be beneficial for ensuring product quality and process consistency.


Biotechnology and Bioengineering | 1997

Fed-batch culture of recombinant NS0 myeloma cells with high monoclonal antibody production.

Weichang Zhou; Chun-Chiang Chen; Barry C. Buckland; John G. Aunins

An amplified NS0 cell line transfected with a vector expressing a humanized monoclonal antibody (MAb) against CD-18 and glutamine synthetase (GS) was cultivated in a 1.5 L fed-batch culture using a serum-free, glutamine-free medium. Concentrated solutions of key nutrient components were fed periodically using a simple feeding control strategy. Feeding amounts were adjusted daily based on the integral of viable cell concentration over time (IVC) and assumed constant specific nutrient consumption rates or yields to maintain concentrations of the key nutrient components around their initial levels. On-line oxygen uptake rate (OUR) measurement was used to aid empirically the adjustment of the feeding time points and amounts by inferring time points of nutrient depletion. Through effective nutritional control, both cell growth phase and culture lifetime were prolonged significantly, resulting in a maximal viable cell concentration of 6.6 x 10(9) cells/L and a final IVC of 1.6 x 10(12) cells-h/L at 672 h. The final MAb concentration reached more than 2.7 g/L. In this fed-batch culture, cellular metabolism shifts were repeatedly observed. Accompanying the culture phase transition from the exponential growth to the stationary phase, lactate, which was produced in the exponential growth phase, became consumed. The time point at which this metabolism shift occurred corresponded to that of rapid decrease of OUR, which most likely was caused by nutrient depletion. This transition coincided with the onset of ammonia, glutamate and glutamine accumulation. With removal of the nutrient depletion by increasing the daily nutrient feeding amount, OUR recovered and viable cell concentration increased, while cell metabolism shifted again. Instead of consumption, lactate became produced again. These results suggest close relationships among nutrient depletion, cell metabolism transition, and cell death. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 783-792, 1997.


Biotechnology and Bioengineering | 2010

Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.

Ashraf Amanullah; José Manuel Otero; Mark Mikola; Amy Hsu; Jinyou Zhang; John G. Aunins; H. Brett Schreyer; James Hope; A. Peter Russo

With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench‐top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high‐throughput (HT) technology for process development. One such high‐throughput system is the SimCell™ platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell™ micro‐bioreactor technology for fed‐batch cultivation of a GS‐CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas‐permeable chambers based on a micro‐fluidic design, with six micro‐bioreactors (MBs) per micro‐bioreactor array (MBA). Online, non‐invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3‐ and 100‐L bioreactor scales. The results of the study demonstrate that the SimCell™ platform operated under fed‐batch conditions could support viable cell concentrations up to least 12 × 106 cells/mL. In addition, both intra‐MB (MB to MB) as well as intra‐MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra‐MB and ‐MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) × 100. The % CV values for most intra‐MB and intra‐MBA measurements were generally under 10% and the intra‐MBA values were slightly lower than those for intra‐MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench‐top, and pilot scale bioreactor cultivations and found to be within ±20% of the historical averages. Biotechnol. Bioeng. 2010; 106: 57–67.


Gene Therapy | 2005

Use of adenoviral vectors as veterinary vaccines

Tiago B. Ferreira; Paula M. Alves; John G. Aunins; Manuel J.T. Carrondo

Vaccines are the most effective and inexpensive prophylactic tool in veterinary medicine. Ideally, vaccines should induce a lifelong protective immunity against the target pathogen while not causing clinical or pathological signs of diseases in the vaccinated animals. However, such ideal vaccines are rare in the veterinary field. Many vaccines are either of limited effectiveness or have harmful side effects. In addition, there are still severe diseases with no effective vaccines. A very important criterion for an ideal vaccine in veterinary medicine is low cost; this is especially important in developing countries and even more so for poultry vaccination, where vaccines must sell for a few cents a dose. Traditional approaches include inactivated vaccines, attenuated live vaccines and subunit vaccines. Recently, genetic engineering has been applied to design new, improved vaccines. Adenovirus vectors are highly efficient for gene transfer in a broad spectrum of cell types and species. Moreover, adenoviruses often induce humoral, mucosal and cellular immune responses to antigens encoded by the inserted foreign genes. Thus, adenoviruses have become a vector of choice for delivery and expression of foreign proteins for vaccination. Consequently, the market requirements for adenovirus vaccines are increasing, creating a need for production methodologies of concentrated vectors with warranted purity and efficacy. This review summarizes recent developments and approaches of adenovirus production and purification as the application of these vectors, including successes and failures in clinical applications to date.


Advances in Biochemical Engineering \/ Biotechnology | 2002

Production of core and virus-like particles with baculovirus infected insect cells.

Luis Maranga; Pedro Cruz; John G. Aunins; Manuel J.T. Carrondo

In this paper the fundamental aspects of process development for the production of core and virus-like particles with baculovirus infected insect cells are reviewed. The issues addressed include: particle formation and monomer composition, chemical and physical conditions for optimal cell growth, baculovirus replication and product expression, multiplicity of infection strategy, and scale-up of the process. Study of the differences in the metabolic requirements of infected and non-infected cells is necessary for high cell density processes. In the bioreactor, the specific oxygen uptake rate (OURsp) plays a central role in process scale-up, leading to the specification of the bioreactor operational parameters. Shear stress can also be an important variable for bioreactor operation due to its influence on cell growth and product expression. The determination of the critical variables in process development is discussed, showing the relevance of the mathematical models that have been developed for the insect cells/baculovirus system in process implementation and control.


Biotechnology and Bioengineering | 2000

Phosphate feeding improves high‐cell‐concentration NS0 myeloma culture performance for monoclonal antibody production

Vivian M. deZengotita; William M. Miller; John G. Aunins; Weichang Zhou

Phosphorus depletion was identified in high-cell-concentration fed-batch NS0 myeloma cell cultures producing a humanized monoclonal antibody (MAb). In these cultures, the maximum viable and total cell concentration was generally ca. 5 x 10(9) and 7 x 10(9) cells/L, respectively, without phosphate feeding. Depletion of essential amino acids, such as lysine, was initially thought to cause the onset of cell death. However, further improvement of cell growth was not achieved by feeding a stoichiometrically balanced amino acid solution, which eliminated depletion of amino acids. Even though a higher cell viability was maintained for a longer period, no increase in total cell concentration was observed. Afterwards, phosphorus was found to be depleted in these cultures. By also feeding a phosphate solution to eliminate phosphorus depletion, the cell growth phase was prolonged significantly, resulting in a total cell concentration of ca. 17 x 10(9) cells/L, which is much greater than ca. 7 x 10(9) cells/L without phosphate feeding. The maximum viable cell concentration reached about 10 x 10(9) cells/L, twice as high as that without phosphate feeding. Apoptosis was also delayed and suppressed with phosphate feeding. A nonapoptotic viable cell population of 6.5 x 10(9) cells/L, as compared with 3 x 10(9) cells/L without phosphate feeding, was obtained and successfully maintained for about 70 h. These results are consistent with the knowledge that phosphorus is an essential part of many cell components, including phospholipids, DNA, and RNA. As a result of phosphate feeding, a much higher integral of viable cell concentration over time was achieved, resulting in a correspondingly higher MAb titer of ca. 1.3 g/L. It was also noted that phosphate feeding delayed the cell metabolism shift from lactate production to lactate consumption typically observed in recombinant NS0 cultures. The results highlight the importance of phosphate feeding in high-cell-concentration NS0 cultures.


Applied Microbiology and Biotechnology | 1994

Changes in animal cell natural aggregates in suspended batch cultures.

José L. Moreira; Paula M. Alves; John G. Aunins; M. J. T. Corrondo

Some anchorage-dependent animal cells can form natural aggregates in stirred tanks. Baby hamster kidney (BHK) natural aggregates are described and characterized. Total cell concentration and viability could be obtained after aggregate mechanical aissociation, with negligible cell lysis and no change in cell membrane permeability. During a normal batch run, aggregates were formed immediately after inoculation, a few spherical aggregates increasing size during the initial growth phase. At the end of the growth phase, an increase in aggregate concentration was observed, without a considerable increase in aggregate diameter. At the end of the batch run, 160 h after inoculation, aggregates disintegrated into smaller, non-spherical units, following a sharp viability decrease. Cell concentrations of 1. 2 · 106 cells/ml were obtained, with 60% of the total cells being in aggregates; the cell concentration in aggregates achieved 5 · 108 cells/ml, with a porosity of 55%. Viability was consistently in the range 85–90%, both for aggregate and suspended cells.


Cytotechnology | 1992

Evaluation of a microcarrier process for large-scale cultivation of attenuated hepatitis A

Beth Junker; Florence J. Wu; S. Wang; J. Waterbury; G. Hunt; J. Hennessey; John G. Aunins; John A. Lewis; M. Silberklang; Barry C. Buckland

Microcarrier culture was investigated for the propagation of attenuated hepatitis A vaccine in the anchorage-dependent human fibroblast cell line, MRC-5. Cells were cultivated at 37°C for one to two weeks, while virus accumulation was performed at 32°C over 21 to 28 days. The major development focus for the microcarrier process was the difference between the cell and virus growth phases. Virus antigen yields, growth kinetics, and cell layer/bead morphology were each examined and compared for both the microcarrier and stationary T-flask cultures. Overall, cell densities of 4–5×106 cells/ml at 5–10 g/l beads were readily attained and could be maintained in the absence of infection at either 37°C or 32°C. Upon virus inoculation, however, substantial cell density decreases were observed as well as 2.5 to 10-fold lower per cell and per unit surface area antigen yields as compared to stationary cultures. The advantages as well as the problems presented by the microcarrier approach will be discussed.


Biotechnology and Bioengineering | 2000

Two-dimensional versus three-dimensional culture systems : Effects on growth and productivity of BHK cells

Paula M. Alves; José L. Moreira; J. M. Rodrigues; John G. Aunins; Manuel J.T. Carrondo

The influence of surface growth (two-dimensional microcarriers) and three-dimensional growth (aggregates and macroporous supports) in agitated, suspended batch culture systems upon growth and productivity of BHK was compared. Cultures using three porous microcarriers (CultiSpher G, Cellsnow EX, and Cytocell), one nonporous microcarrier (Cytodex 3) and natural aggregates were performed in stirred tanks using two different agitation rates (60 and 100 RPM). With the exception of Cytocell, cell growth, viability, and productivity were similar when three-dimensional structures (porous microcarriers and aggregates) were used. Nonporous microcarriers only compared well at 60 RPM as growth ceased under overagitation. These results suggest that cultures less susceptible to fluid shear are advantageous for scale-up. (c) 1996 John Wiley & Sons, Inc.


Biotechnology and Bioengineering | 2000

Computational and experimental investigation of flow and fluid mixing in the roller bottle bioreactor

D. R. Unger; Fernando J. Muzzio; John G. Aunins; R. Singhvi

The fully three-dimensional velocity field in a roller bottle bioreactor is simulated for two systems (creeping flow and inertial flow conditions) using a control volume-finite element method, and validated experimentally using particle imaging velocimetry. The velocity fields and flow patterns are described in detail using velocity contour plots and tracer particle pathline computations. Bulk fluid mixing in the roller bottle is then examined using a computational fluid tracer program and flow visualization experiments. It is shown that the velocity fields and flow patterns are substantially different for each of these flow cases. For creeping flow conditions the flow streamlines consist of symmetric, closed three-dimensional loops; and for inertial flow conditions, streamlines consist of asymmetric toroidal surfaces. Fluid tracers remain trapped on these streamlines and are unable to contact other regions of the flow domain. As a result, fluid mixing is greatly hindered, especially in the axial direction. The lack of efficient axial mixing is verified computationally and experimentally. Such mixing limitations, however, are readily overcome by introducing a small-amplitude vertical rocking motion that disrupts both symmetry and recirculation, leading to much faster and complete axial mixing. The frequency of such motion is shown to have a significant effect on mixing rate, which is a critical parameter in the overall performance of roller bottles.

Collaboration


Dive into the John G. Aunins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula M. Alves

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José L. Moreira

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pedro Cruz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge