Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John G. Gibbons is active.

Publication


Featured researches published by John G. Gibbons.


Science | 2007

Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels

Richa Saxena; Benjamin F. Voight; Valeriya Lyssenko; Noël P. Burtt; Paul I. W. de Bakker; Hong Chen; Jeffrey J. Roix; Sekar Kathiresan; Joel N. Hirschhorn; Mark J. Daly; Thomas Edward Hughes; Leif Groop; David Altshuler; Peter Almgren; Jose C. Florez; Joanne M. Meyer; Kristin Ardlie; Kristina Bengtsson Boström; Bo Isomaa; Guillaume Lettre; Ulf Lindblad; Helen N. Lyon; Olle Melander; Christopher Newton-Cheh; Peter Nilsson; Marju Orho-Melander; Lennart Råstam; Elizabeth K. Speliotes; Marja-Riitta Taskinen; Tiinamaija Tuomi

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D—in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1—and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.


Eukaryotic Cell | 2012

Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus

John G. Gibbons; Anne Beauvais; Remi Beau; Kriston L. McGary; Jean-Paul Latgé; Antonis Rokas

ABSTRACT Aspergillus fumigatus is the most common and deadly pulmonary fungal infection worldwide. In the lung, the fungus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix. To identify candidate genes involved in this biofilm (BF) growth, we used RNA-Seq to compare the transcriptomes of BF and liquid plankton (PL) growth. Sequencing and mapping of tens of millions sequence reads against the A. fumigatus transcriptome identified 3,728 differentially regulated genes in the two conditions. Although many of these genes, including the ones coding for transcription factors, stress response, the ribosome, and the translation machinery, likely reflect the different growth demands in the two conditions, our experiment also identified hundreds of candidate genes for the observed differences in morphology and pathobiology between BF and PL. We found an overrepresentation of upregulated genes in transport, secondary metabolism, and cell wall and surface functions. Furthermore, upregulated genes showed significant spatial structure across the A. fumigatus genome; they were more likely to occur in subtelomeric regions and colocalized in 27 genomic neighborhoods, many of which overlapped with known or candidate secondary metabolism gene clusters. We also identified 1,164 genes that were downregulated. This gene set was not spatially structured across the genome and was overrepresented in genes participating in primary metabolic functions, including carbon and amino acid metabolism. These results add valuable insight into the genetics of biofilm formation in A. fumigatus and other filamentous fungi and identify many relevant, in the context of biofilm biology, candidate genes for downstream functional experiments.


Genome Biology and Evolution | 2011

Complete Bacteriophage Transfer in a Bacterial Endosymbiont (Wolbachia) Determined by Targeted Genome Capture

Bethany N. Kent; Leonidas Salichos; John G. Gibbons; Antonis Rokas; Irene L. G. Newton; Michael E. Clark; Seth R. Bordenstein

Bacteriophage flux can cause the majority of genetic diversity in free-living bacteria. This tenet of bacterial genome evolution generally does not extend to obligate intracellular bacteria owing to their reduced contact with other microbes and a predominance of gene deletion over gene transfer. However, recent studies suggest intracellular coinfections in the same host can facilitate exchange of mobile elements between obligate intracellular bacteria—a means by which these bacteria can partially mitigate the reductive forces of the intracellular lifestyle. To test whether bacteriophages transfer as single genes or larger regions between coinfections, we sequenced the genome of the obligate intracellular Wolbachia strain wVitB from the parasitic wasp Nasonia vitripennis and compared it against the prophage sequences of the divergent wVitA coinfection. We applied, for the first time, a targeted sequence capture array to specifically trap the symbionts DNA from a heterogeneous mixture of eukaryotic, bacterial, and viral DNA. The tiled array successfully captured the genome with 98.3% efficiency. Examination of the genome sequence revealed the largest transfer of bacteriophage and flanking genes (52.2 kb) to date between two obligate intracellular coinfections. The mobile element transfer occurred in the recent evolutionary past based on the 99.9% average nucleotide identity of the phage sequences between the two strains. In addition to discovering an evolutionary recent and large-scale horizontal phage transfer between coinfecting obligate intracellular bacteria, we demonstrate that “targeted genome capture” can enrich target DNA to alleviate the problem of isolating symbiotic microbes that are difficult to culture or purify from the conglomerate of organisms inside eukaryotes.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes

John G. Gibbons; Alan T. Branco; Susana A. Godinho; Shoukai Yu; Bernardo Lemos

Significance Ribosomes are essential intracellular machines composed of proteins and RNA molecules. The DNA sequences [i.e., ribosomal DNA (rDNA)] encoding rRNAs are tandemly repeated and give rise to the nucleolus. The rRNAs are transcribed from two array kinds (the 5S and the 45S arrays). Here we show that variation in the 5S and 45S rDNA arrays is tightly coupled, despite their location on different chromosomes. Our observations suggest that natural selection contributes to maintain balanced rDNA dosage across unlinked rDNA arrays. Finally, we show that bisphenol A can induce parallel loss of rDNA units in 5S and 45S arrays. These observations raise the prospect that human diseases might be traced to disrupted rDNA dosage balance in the genome. Tandemly repeated ribosomal DNA (rDNA) arrays are among the most evolutionary dynamic loci of eukaryotic genomes. The loci code for essential cellular components, yet exhibit extensive copy number (CN) variation within and between species. CN might be partly determined by the requirement of dosage balance between the 5S and 45S rDNA arrays. The arrays are nonhomologous, physically unlinked in mammals, and encode functionally interdependent RNA components of the ribosome. Here we show that the 5S and 45S rDNA arrays exhibit concerted CN variation (cCNV). Despite 5S and 45S rDNA elements residing on different chromosomes and lacking sequence similarity, cCNV between these loci is strong, evolutionarily conserved in humans and mice, and manifested across individual genotypes in natural populations and pedigrees. Finally, we observe that bisphenol A induces rapid and parallel modulation of 5S and 45S rDNA CN. Our observations reveal a novel mode of genome variation, indicate that natural selection contributed to the evolution and conservation of cCNV, and support the hypothesis that 5S CN is partly determined by the requirement of dosage balance with the 45S rDNA array. We suggest that human disease variation might be traced to disrupted rDNA dosage balance in the genome.


Nature Communications | 2014

Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans

John G. Gibbons; Alan T. Branco; Shoukai Yu; Bernardo Lemos

Ribosomes are essential intracellular machines composed of proteins and RNA molecules. The DNA sequences (rDNA) encoding ribosomal RNAs (rRNAs) are tandemly repeated and give origin to the nucleolus. Here we develop a computational method for estimating rDNA dosage (copy number) and mitochondrial DNA abundance using whole-genome short-read DNA sequencing. We estimate these attributes across hundreds of human genomes and their association with global gene expression. The analyses uncover abundant variation in rDNA dosage that is coupled with the expression of hundreds of functionally coherent gene sets. These include associations with genes coding for chromatin components that target the nucleolus, including CTCF and HP1β. Finally, the data show an inverse association between rDNA dosage and mitochondrial DNA abundance that is manifested across genotypes. Our findings uncover a novel and cryptic source of hypervariable genomic diversity with global regulatory consequences (ribosomal eQTL) in humans. The variation provides a mechanism for cellular homeostasis and for rapid and reversible adaptation.


Molecular Ecology | 2012

Evidence for genetic differentiation and variable recombination rates among Dutch populations of the opportunistic human pathogen Aspergillus fumigatus.

Corné H. W. Klaassen; John G. Gibbons; Natalie D. Fedorova; Jacques F. Meis; Antonis Rokas

As the frequency of antifungal drug resistance continues to increase, understanding the genetic structure of fungal populations, where resistant isolates have emerged and spread, is of major importance. Aspergillus fumigatus is an ubiquitously distributed fungus and the primary causative agent of invasive aspergillosis (IA), a potentially lethal infection in immunocompromised individuals. In the last few years, an increasing number of A. fumigatus isolates has evolved resistance to triazoles, the primary drugs for treating IA infections. In most isolates, this multiple‐triazole‐resistance (MTR) phenotype is caused by mutations in the cyp51A gene, which encodes the protein targeted by the triazoles. We investigated the genetic differentiation and reproductive mode of A. fumigatus in the Netherlands, the country where the MTR phenotype probably originated, to determine their role in facilitating the emergence and distribution of resistance genotypes. Using 20 genome‐wide neutral markers, we genotyped 255 Dutch isolates including 25 isolates with the MTR phenotype. In contrast to previous reports, our results show that Dutch A. fumigatus genotypes are genetically differentiated into five distinct populations. Four of the five populations show significant linkage disequilibrium, indicative of an asexual reproductive mode, whereas the fifth population is in linkage equilibrium, indicative of a sexual reproductive mode. Notably, the observed genetic differentiation among Dutch isolates does not correlate with geography, although all isolates with the MTR phenotype nest within a single, predominantly asexual, population. These results suggest that both reproductive mode and genetic differentiation contribute to the structure of Dutch A. fumigatus populations and are probably shaping the evolutionary dynamics of drug resistance in this potentially deadly pathogen.


BMC Genomics | 2012

Transcriptome of the adult female malaria mosquito vector Anopheles albimanus

Jesús Martínez-Barnetche; Rosa Elena Gómez-Barreto; Marbella Ovilla-Muñoz; Juan Téllez-Sosa; David Lopez; Rhoel R. Dinglasan; Ceereena Ubaida Mohien; Robert M. MacCallum; Seth Redmond; John G. Gibbons; Antonis Rokas; Carlos A. Machado; Febe E. Cázares-Raga; Lilia González-Cerón; Salvador Hernández-Martínez; Mario H Rodríguez López

BackgroundHuman Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex.ResultsWe sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects.ConclusionsWe have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).


Current Opinion in Genetics & Development | 2015

The genomics of microbial domestication in the fermented food environment

John G. Gibbons; David C. Rinker

Shortly after the agricultural revolution, the domestication of bacteria, yeasts, and molds, played an essential role in enhancing the stability, quality, flavor, and texture of food products. These domestication events were probably the result of human food production practices that entailed the continual recycling of isolated microbial communities in the presence of abundant agricultural food sources. We suggest that within these novel agrarian food niches the metabolic requirements of those microbes became regular and predictable resulting in rapid genomic specialization through such mechanisms as pseudogenization, genome decay, interspecific hybridization, gene duplication, and horizontal gene transfer. The ultimate result was domesticated strains of microorganisms with enhanced fermentative capacities.


Molecular Biology and Evolution | 2008

Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.

John G. Gibbons; Antonis Rokas

Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.


Molecular & Cellular Proteomics | 2013

A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites

Ceereena Ubaida Mohien; David R. Colquhoun; Derrick K. Mathias; John G. Gibbons; Jennifer S. Armistead; Maria C. Rodriguez; Mario H. Rodriguez; Nathan Edwards; Jürgen Hartler; Gerhard G. Thallinger; David R. Graham; Jesús Martínez-Barnetche; Antonis Rokas; Rhoel R. Dinglasan

Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquitos luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.

Collaboration


Dive into the John G. Gibbons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae-Hyuk Yu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge