Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John G. Oakeshott is active.

Publication


Featured researches published by John G. Oakeshott.


Insect Molecular Biology | 2006

A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee

Charles Claudianos; Hilary Ranson; Reed M. Johnson; Sunita Biswas; Mary A. Schuler; May R. Berenbaum; René Feyereisen; John G. Oakeshott

The honeybee genome has substantially fewer protein coding genes (≈ 11 000 genes) than Drosophila melanogaster (≈ 13 500) and Anopheles gambiae (≈ 14 000). Some of the most marked differences occur in three superfamilies encoding xenobiotic detoxifying enzymes. Specifically there are only about half as many glutathione‐S‐transferases (GSTs), cytochrome P450 monooxygenases (P450s) and carboxyl/cholinesterases (CCEs) in the honeybee. This includes 10‐fold or greater shortfalls in the numbers of Delta and Epsilon GSTs and CYP4 P450s, members of which clades have been recurrently associated with insecticide resistance in other species. These shortfalls may contribute to the sensitivity of the honeybee to insecticides. On the other hand there are some recent radiations in CYP6, CYP9 and certain CCE clades in A. mellifera that could be associated with the evolution of the hormonal and chemosensory processes underpinning its highly organized eusociality.


Applied and Environmental Microbiology | 2002

Identification of an opd (Organophosphate Degradation) Gene in an Agrobacterium Isolate

Irene Horne; Tara D. Sutherland; Rebecca L. Harcourt; Robyn J. Russell; John G. Oakeshott

ABSTRACT We isolated a bacterial strain, Agrobacterium radiobacter P230, which can hydrolyze a wide range of organophosphate (OP) insecticides. A gene encoding a protein involved in OP hydrolysis was cloned from A. radiobacter P230 and sequenced. This gene (called opdA) had sequence similarity to opd, a gene previously shown to encode an OP-hydrolyzing enzyme in Flavobacterium sp. strain ATCC 27551 and Brevundimonas diminuta MG. Insertional mutation of the opdA gene produced a strain lacking the ability to hydrolyze OPs, suggesting that this is the only gene encoding an OP-hydrolyzing enzyme in A. radiobacter P230. The OPH and OpdA proteins, encoded by opd and opdA, respectively, were overexpressed and purified as maltose-binding proteins, and the maltose-binding protein moiety was cleaved and removed. Neither protein was able to hydrolyze the aliphatic OP malathion. The kinetics of the two proteins for diethyl OPs were comparable. For dimethyl OPs, OpdA had a higher kcat than OPH. It was also capable of hydrolyzing the dimethyl OPs phosmet and fenthion, which were not hydrolyzed at detectable levels by OPH.


Scientific Reports | 2017

Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges

Anaïs Gouin; Anthony Bretaudeau; Kiwoong Nam; Sylvie Gimenez; Jean-Marc Aury; Bernard Duvic; Frédérique Hilliou; Nicolas Durand; Nicolas Montagné; Isabelle Darboux; Suyog S. Kuwar; Thomas Chertemps; David Siaussat; Anne Bretschneider; Yves Moné; Seung-Joon Ahn; Sabine Hänniger; Anne-Sophie Gosselin Grenet; David Neunemann; Florian Maumus; Isabelle Luyten; Karine Labadie; Wei Xu; Fotini Koutroumpa; Jean-Michel Escoubas; Angel Llopis; Martine Maïbèche-Coisne; Fanny Salasc; Archana Tomar; Alisha Anderson

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.


Microbiology and Molecular Biology Reviews | 2010

Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation

Rup Lal; Gunjan Pandey; Pooja Sharma; Kirti Kumari; Shweta Malhotra; Rinku Pandey; Vishakha Raina; Hans-Peter E. Kohler; Christof Holliger; Colin J. Jackson; John G. Oakeshott

SUMMARY Lindane, the γ-isomer of hexachlorocyclohexane (HCH), is a potent insecticide. Purified lindane or unpurified mixtures of this and α-, β-, and δ-isomers of HCH were widely used as commercial insecticides in the last half of the 20th century. Large dumps of unused HCH isomers now constitute a major hazard because of their long residence times in soil and high nontarget toxicities. The major pathway for the aerobic degradation of HCH isomers in soil is the Lin pathway, and variants of this pathway will degrade all four of the HCH isomers although only slowly. Sequence differences in the primary LinA and LinB enzymes in the pathway play a key role in determining their ability to degrade the different isomers. LinA is a dehydrochlorinase, but little is known of its biochemistry. LinB is a hydrolytic dechlorinase that has been heterologously expressed and crystallized, and there is some understanding of the sequence-structure-function relationships underlying its substrate specificity and kinetics, although there are also some significant anomalies. The kinetics of some LinB variants are reported to be slow even for their preferred isomers. It is important to develop a better understanding of the biochemistries of the LinA and LinB variants and to use that knowledge to build better variants, because field trials of some bioremediation strategies based on the Lin pathway have yielded promising results but would not yet achieve economic levels of remediation.


Comprehensive Molecular Insect Science | 2005

Biochemical Genetics and Genomics of Insect Esterases

John G. Oakeshott; Charles Claudianos; Peter M. Campbell; Richard D. Newcomb; Robyn J. Russell

Abstract Esterases are a major part of insect biochemical research and an important component of insects’ xenobiotic defense systems. This article reviews the biochemistry and genetics of insect esterases, focusing mainly on developments. It is written from a genomics perspective and the bulk of it is organized around the major clades of insect esterases as revealed by the comparative genomic analysis. Some of the historical functional definitions and classifications applied to insect esterases are briefly discussed.


Evolutionary Applications | 2011

Evolutionary principles and their practical application

Andrew P. Hendry; Michael T. Kinnison; Mikko Heino; Troy Day; Thomas B. Smith; Gary P. Fitt; Carl T. Bergstrom; John G. Oakeshott; Peter Stanley Jørgensen; Myron P. Zalucki; George Gilchrist; Simon G. Southerton; Andrew Sih; Sharon Y. Strauss; Robert Ford Denison; Scott P. Carroll

Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life‐history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco‐evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.


Applied and Environmental Microbiology | 2000

Enrichment of an endosulfan-degrading mixed bacterial culture

Tara D. Sutherland; Irene Horne; Michael J. Lacey; Rebecca L. Harcourt; Robyn J. Russell; John G. Oakeshott

ABSTRACT An endosulfan-degrading mixed bacterial culture was enriched from soil with a history of endosulfan exposure. Enrichment was obtained by using the insecticide as the sole source of sulfur. Chemical hydrolysis was minimized by using strongly buffered culture medium (pH 6.6), and the detergent Tween 80 was included to emulsify the insecticide, thereby increasing the amount of endosulfan in contact with the bacteria. No growth occurred in control cultures in the absence of endosulfan. Degradation of the insecticide occurred concomitant with bacterial growth. The compound was both oxidized and hydrolyzed. The oxidation reaction favored the alpha isomer and produced endosulfate, a terminal pathway product. Hydrolysis involved a novel intermediate, tentatively identified as endosulfan monoaldehyde on the basis of gas chromatography-mass spectrometry and chemical derivatization results. The accumulation and decline of metabolites suggest that the parent compound was hydrolyzed to the putative monoaldehyde, thereby releasing the sulfite moiety required for growth. The monoaldehyde was then oxidized to endosulfan hydroxyether and further metabolized to (a) polar product(s). The cytochrome P450 inhibitor, piperonyl butoxide, did not prevent endosulfan oxidation or the formation of other metabolites. These results suggest that this mixed culture is worth investigating as a source of endosulfan-hydrolyzing enzymes for use in enzymatic bioremediation of endosulfan residues.


Insect Molecular Biology | 2010

Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis.

John G. Oakeshott; Reed M. Johnson; May R. Berenbaum; Hilary Ranson; Alexandre S. Cristino; Charles Claudianos

The numbers of glutathione S‐transferase, cytochrome P450 and esterase genes in the genome of the hymenopteran parasitoid Nasonia vitripennis are about twice those found in the genome of another hymenopteran, the honeybee Apis mellifera. Some of the difference is associated with clades of these families implicated in xenobiotic resistance in other insects and some is in clades implicated in hormone and pheromone metabolism. The data support the hypothesis that the eusocial behaviour of the honeybee and the concomitant homeostasis of the nest environment may obviate the need for as many gene/enzyme systems associated with xenobiotic metabolism as are found in other species, including N. vitripennis, that are thought to encounter a wider range of potentially toxic xenobiotics in their diet and habitat.


Indian Journal of Microbiology | 2008

Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation.

Archana Chauhan; Fazlurrahman; John G. Oakeshott; Rakesh K. Jain

Polycyclic aromatic hydrocarbons (PAHs) are compounds of intense public concern due to their persistence in the environment and potentially deleterious effects on human, environmental and ecological health. The clean up of such contaminants using invasive technologies has proven to be expensive and more importantly often damaging to the natural resource properties of the soil, sediment or aquifer. Bioremediation, which exploits the metabolic potential of microbes for the clean-up of recalcitrant xenobiotic compounds, has come up as a promising alternative. Several approaches such as improvement in PAH solubilization and entry into the cell, pathway and enzyme engineering and control of enzyme expression etc. are in development but far from complete. Successful application of the microorganisms for the bioremediation of PAH-contaminated sites therefore requires a deeper understanding of the physiology, biochemistry and molecular genetics of potential catabolic pathways. In this review, we briefly summarize important strategies adopted for PAH bioremediation and discuss the potential for their improvement.


Genetica | 1993

Evolutionary genetics of Drosophila esterases

John G. Oakeshott; E.A. van Papenrecht; T.M. Boyce; Marion J. Healy; R. J. Russell

Over 30 carboxylester hydrolases have been identified inD. melanogaster. Most are classified as acetyl, carboxyl or cholinesterases. Sequence similarities among most of the carboxyl and all the cholinesterases so far characterised fromD. melanogaster and other eukaryotes justify recognition of a carboxyl/cholinesterase multigene family. This family shows minimal sequence similarities with other esterases but crystallographic data for a few non-drosophilid enzymes show that the family shares a distinctive overall structure with some other carboxyl and aryl esterases, so they are all put in one superfamily of /β hydrolases. Fifteen esterase genes have been mapped inD. melanogaster and twelve are clustered at two chromosomal sites. The constitution of each cluster varies acrossDrosophila species but two carboxyl esterases in one cluster are sufficiently conserved that their homologues can be identified among enzymes conferring insecticide resistance in other Diptera. Sequence differences between two other esterases, the EST6 carboxyl esterase and acetylcholinesterase, have been interpreted against the consensus super-secondary structure for the carboxyl/cholinesterase multigene family; their sequence differences are widely dispersed across the structure and include substantial divergence in substrate binding sites and the active site gorge. This also applies when EST6 is compared across species where differences in its expression indicate a difference in function. However, comparisons within and among species where EST6 expression is conserved show that many aspects of the predicted super-secondary structure are tightly conserved. Two notable exceptions are a pair of polymorphisms in the substrate binding site of the enzyme inD. melanogaster. These polymorphisms are associated with differences in substrate interactionsvitro} and demographic data indicate that the alternative forms are not selectively equivalentin vivo.

Collaboration


Dive into the John G. Oakeshott's collaboration.

Top Co-Authors

Avatar

Robyn J. Russell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Colin Scott

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Colin J. Jackson

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Gunjan Pandey

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Irene Horne

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter M. Campbell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Tara D. Sutherland

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Christopher W. Coppin

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Taylor

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge