Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Glenn Morris is active.

Publication


Featured researches published by John Glenn Morris.


International Journal of Health Geographics | 2013

A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti

Andrew Curtis; Jason K. Blackburn; Jocelyn Widmer; John Glenn Morris

BackgroundFine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti.MethodsSpatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions.ResultsPreviously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these “hotspots”.ConclusionsSpatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio-temporal dynamics of the communities. Its simplicity should also be used to encourage local participatory collaborations.


Fems Microbiology Letters | 2008

Lateral gene transfer of O1 serogroup encoding genes of Vibrio cholerae

Sol González Fraga; Mariana Pichel; Norma Binsztein; Judith A. Johnson; John Glenn Morris; Oscar C. Stine

In Gram-negative bacteria, the O-antigen-encoding genes may be transferred between lineages, although mechanisms are not fully understood. To assess possible lateral gene transfer (LGT), 21 Argentinean Vibrio cholerae O-group 1 (O1) isolates were examined using multilocus sequence typing (MLST) to determine the genetic relatedness of housekeeping genes and genes from the O1 gene cluster. MSLT analysis revealed that 4.4% of the nucleotides in the seven housekeeping loci were variable, with six distinct genetic lineages identified among O1 isolates. In contrast, MLST analysis of the eight loci from the O1 serogroup region revealed that 0.24% of the 4943 nucleotides were variable. A putative breakpoint was identified in the JUMPstart sequence. Nine conserved nucleotides differed by a single nucleotide from a DNA uptake signal sequence (USS) also found in Pastuerellaceae. Our data indicate that genes in the O1 biogenesis region are closely related even in distinct genetic lineages, indicative of LGT, with a putative DNA USS identified at the defined boundary for the DNA exchange.


International Encyclopedia of Public Health | 2008

Cholera and Other Vibrioses

John Glenn Morris

Cholera has been feared since antiquity. Since 1817 there have been seven global cholera pandemics. Cholera is characterized by the rapid onset of profuse, watery diarrhea, with dehydration, circulatory collapse, and death in ∼40% of untreated patients. Oral rehydration therapy has dramatically changed cholera death rates, which can now be kept under 1%. Cholera is caused by Vibrio cholerae strains that produce cholera toxin. Milder diarrhea can be caused by other strains of V. cholerae and by Vibrio parahaemolyticus. The latter, together with V. vulnificus, also cause septicemia in patients with liver disease or immunosuppression, with fatality rates approaching 50%.


PLOS ONE | 2015

Increased Isolation Frequency of Toxigenic Vibrio cholerae O1 from Environmental Monitoring Sites in Haiti

Meer T. Alam; Thomas A. Weppelmann; Ira M. Longini; Valery Madsen Beau De Rochars; John Glenn Morris; Afsar Ali

Since the identification of the first cholera case in 2010, the disease has spread in epidemic form throughout the island nation of Haiti; as of 2014, about 700,000 cholera cases have been reported, with over 8,000 deaths. While case numbers have declined, the more fundamental question of whether the causative bacterium, Vibrio cholerae has established an environmental reservoir in the surface waters of Haiti remains to be elucidated. In a previous study conducted between April 2012 and March 2013, we reported the isolation of toxigenic V. cholerae O1 from surface waters in the Ouest Department. After a second year of surveillance (April 2013 to March 2014) using identical methodology, we observed a more than five-fold increase in the number of water samples containing culturable V. cholerae O1 compared to the previous year (1.7% vs 8.6%), with double the number of sites having at least one positive sample (58% vs 20%). Both seasonal water temperatures and precipitation were significantly related to the frequency of isolation. Our data suggest that toxigenic V. cholerae O1 are becoming more common in surface waters in Haiti; while the basis for this increase is uncertain, our findings raise concerns that environmental reservoirs are being established.


PLOS Neglected Tropical Diseases | 2016

Cholera in Cameroon, 2000-2012: Spatial and Temporal Analysis at the Operational (Health District) and Sub Climate Levels.

Moise C. Ngwa; Song Liang; Ian T. Kracalik; Lillian R. Morris; Jason K. Blackburn; Léonard Mbam Mbam; Simon Franky Baonga Ba Pouth; Andrew Teboh; Yang Yang; Mouhaman Arabi; Jonathan D. Sugimoto; John Glenn Morris

Introduction Recurrent cholera outbreaks have been reported in Cameroon since 1971. However, case fatality ratios remain high, and we do not have an optimal understanding of the epidemiology of the disease, due in part to the diversity of Cameroon’s climate subzones and a lack of comprehensive data at the health district level. Methods/Findings A unique health district level dataset of reported cholera case numbers and related deaths from 2000–2012, obtained from the Ministry of Public Health of Cameroon and World Health Organization (WHO) country office, served as the basis for the analysis. During this time period, 43,474 cholera cases were reported: 1748 were fatal (mean annual case fatality ratio of 7.9%), with an attack rate of 17.9 reported cases per 100,000 inhabitants per year. Outbreaks occurred in three waves during the 13-year time period, with the highest case fatality ratios at the beginning of each wave. Seasonal patterns of illness differed strikingly between climate subzones (Sudano-Sahelian, Tropical Humid, Guinea Equatorial, and Equatorial Monsoon). In the northern Sudano-Sahelian subzone, highest number of cases tended to occur during the rainy season (July-September). The southern Equatorial Monsoon subzone reported cases year-round, with the lowest numbers during peak rainfall (July-September). A spatial clustering analysis identified multiple clusters of high incidence health districts during 2010 and 2011, which were the 2 years with the highest annual attack rates. A spatiotemporal autoregressive Poisson regression model fit to the 2010–2011 data identified significant associations between the risk of transmission and several factors, including the presence of major waterbody or highway, as well as the average daily maximum temperature and the precipitation levels over the preceding two weeks. The direction and/or magnitude of these associations differed between climate subzones, which, in turn, differed from national estimates that ignored subzones differences in climate variables. Conclusions/Significance The epidemiology of cholera in Cameroon differs substantially between climate subzones. Development of an optimal comprehensive country-wide control strategy for cholera requires an understanding of the impact of the natural and built environment on transmission patterns at the local level, particularly in the setting of ongoing climate change.


Pediatric Infectious Disease Journal | 2016

Isolation of an Enterovirus D68 from Blood from a Child with Pneumonia in Rural Haiti: Close Phylogenetic Linkage with New York Strain.

Maha A. Elbadry; John A. Lednicky; Eleonora Cella; Taina Telisma; Sonese Chavannes; Julia C. Loeb; Massimo Ciccozzi; Bernard A. Okech; Beau De Rochars Vm; Marco Salemi; John Glenn Morris

We report the detection and isolation of enterovirus D68 from the blood of a 6-year-old child in rural Haiti, who presented with high fever and clinical signs suggestive of pneumonia. On phylogenetic analysis, this Haitian isolate was virtually identical to an enterovirus D68 strain circulating in New York during the same time period.


International Journal of Environmental Research and Public Health | 2016

Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti

Andrew Curtis; Jason K. Blackburn; Sarah L. Smiley; Minmin Yen; Andrew Camilli; Meer T. Alam; Afsar Ali; John Glenn Morris

The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains) to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.


American Journal of Tropical Medicine and Hygiene | 2017

Isolation of Coronavirus NL63 from Blood from Children in Rural Haiti: Phylogenetic Similarities with Recent Isolates from Malaysia.

Beau De Rochars Vm; John A. Lednicky; Sarah K. White; Julia C. Loeb; Maha A. Elbadry; Taina Telisma; Sonese Chavannes; Marie Gina Anilis; Eleonora Cella; Massimo Ciccozzi; Bernard A. Okech; Marco Salemi; John Glenn Morris

Human coronavirus (HCoV) NL63 is recognized as a common cause of upper respiratory infections and influenza-like illness. In screening children with acute undifferentiated febrile illness in a school cohort in rural Haiti, we identified HCoV-NL63 in blood samples from four children. Cases clustered over an 11-day period; children did not have respiratory symptoms, but two had gastrointestinal complaints. On phylogenetic analysis, the Haitian HCoV-NL63 strains cluster together in a highly supported monophyletic clade linked most closely with recently reported strains from Malaysia; two respiratory HCoV-NL63 strains identified in north Florida in the same general period form a separate clade, albeit again with close linkages with the Malaysian strains. Our data highlight the variety of presentations that may be seen with HCoV-NL63, and underscore the apparent ease with which CoV strains move among countries, with our data consistent with recurrent introduction of strains into the Caribbean (Haiti and Florida) from Asia.


The Pan African medical journal | 2016

Cholera public health surveillance in the Republic of Cameroon-opportunities and challenges

Moise C. Ngwa; Song Liang; Léonard Mbam Mbam; Arabi Mouhaman; Andrew Teboh; Kaousseri Brekmo; Onana Mevoula; John Glenn Morris

Introduction In Cameroon, cholera has periodically resurfaced since it was first reported in 1971. In 2003, Cameroon adapted the Integrated Disease Surveillance and Response (IDSR) strategy to strengthen surveillance in the country. This study was an in-depth description and assessment of the structure, core and support functions, and attributes of the current cholera surveillance system in Cameroon. It also discussed its strengths and challenges with hope that lessons learned could improve the system in Cameroon and in other countries in Africa implementing the IDSR strategy. Methods Semi-structured key informant interviews, peer reviewed articles, and government record review were conducted in the Far North and Centre Regions of Cameroon. We used the matrix and conceptual framework from the World Health Organization (WHO) and Centers for Disease Control and Prevention, WHO Regional Office for Africa Technical Guidelines to frame the study. Site visits included the WHO country office, the ministry of public health (MoPH), two Regional Public Health Delegations (RPHDs), eight health districts (HDs) and health facilities (HFs) including two labs. Results Cholera surveillance is passive but turns active during outbreaks and follows a hierarchical structure. Cholera data are collected at HFs and sent to HDs where data are compiled and sent to the RPHD in paper format. RPHDs de-identify, digitalize, and send the data to the MoPH via internet and from there to the WHO. The case definition was officially changed in 2010 but the outdated definition was still in use in 2013. Nationally, there are 3 laboratories that have the ability to confirm cholera cases; the lack of laboratory capacity at HFs hampers case and outbreak confirmation. The absence of structured data analysis at the RPHD, HD, and HF further compounds the situation, making the goal of IDSR of data analysis and rapid response at the HD very challenging. Feedback is strongest at the central level (MoPH) and non-existent at the levels below it, with only minimal training and supervision of staff. In 2012, mobile phone coverage expanded to all 183 HDs and to HFs in 2014 in the Far North and North Regions. The phones improved immediate reporting and outbreak control. Further, the creation of cholera command and control centers, and introduction of laptops at all RPHDs are major strengths in the surveillance system. Completeness and timeliness of reporting varied considerably among levels. Conclusion Significant milestones in the hierarchical structure towards integration and achieving early detection and rapid response in cholera surveillance are in effective use; however, some challenges exist. The surveillance system lack labs at HFs and there is no data analysis at HD level. Thus, the goal of IDSR-strategy of early detection, data analysis, and rapid response at the HD level is a challenge. Both human and material resources are needed at the HD level to achieve this goal.


Tropical Medicine and Infectious Disease | 2017

Polisye Kont Moustik: A Culturally Competent Approach to Larval Source Reduction in the Context of Lymphatic Filariasis and Malaria Elimination in Haiti

Kevin Louis Bardosh; Lorence Jean; Valery Madsen Beau De Rochars; Jean Frantz Lemoine; Bernard A. Okech; Sadie J. Ryan; Susan C. Welburn; John Glenn Morris

Community engagement has become an increasingly important focus of global health programs. Arbovirus emergence in the Americas (Zika and chikungunya virues), and global goals for malaria and lymphatic filariasis elimination, mean that community-based mosquito control has taken on a new salience. But how should mosquito control initiatives be designed and implemented in ways that best engage local people? What are the challenges and trade-offs of different strategies, not only for effectiveness but also for scale-up? In this paper, we describe the social and political dynamics of a pilot study in a small town in northern Haiti. With the aim of developing a culturally-competent approach to larval source management (LSM), our pilot project combined larval surveillance with environmental management, social engagement, community education, and larvicide application. Orientated around a network of ‘Mosquito Police’ (Polisye Kont Moustik, in Haitian Creole), our approach integrated elements of formative research, social learning, and community participation. Here, we reflect on the challenges we encountered in the field, from larval mapping, staff management, education and behavior change, engagement with formal and informal leaders, and community-based environmental cleanup. We discuss how these programmatic efforts were influenced and shaped by a complex range of social, cultural, political, and economic realities, and conclude by discussing the implications of our community-based approach for the elimination of lymphatic filariasis and malaria, and other vector-borne diseases, in Haiti.

Collaboration


Dive into the John Glenn Morris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Teboh

University of Yaoundé I

View shared research outputs
Researchain Logo
Decentralizing Knowledge