Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Grainger is active.

Publication


Featured researches published by John Grainger.


Nature | 2010

Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling.

Kamran Ghoreschi; Arian Laurence; Xiang-Ping Yang; Cristina M. Tato; Mandy J. McGeachy; Joanne E. Konkel; Haydeé L. Ramos; Lai Wei; Todd S. Davidson; Nicolas Bouladoux; John Grainger; Qian Chen; Yuka Kanno; Wendy T. Watford; Hong-Wei Sun; Gérard Eberl; Ethan M. Shevach; Yasmine Belkaid; Daniel J. Cua; WanJun Chen; John J. O’Shea

CD4+ T-helper cells that selectively produce interleukin (IL)-17 (TH17), are critical for host defence and autoimmunity. Although crucial for TH17 cells in vivo, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been proposed to be the factors responsible for initiating specification. Here we show that TH17 differentiation can occur in the absence of TGF-β signalling. Neither IL-6 nor IL-23 alone efficiently generated TH17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naive precursors, independently of TGF-β. Epigenetic modification of the Il17a, Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed RORγt (encoded by Rorc) and T-bet. T-bet+RORγt+ TH17 cells are generated in vivo during experimental allergic encephalomyelitis, and adoptively transferred TH17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data indicate an alternative mode for TH17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore may have therapeutic implications.


Molecular and Biochemical Parasitology | 2009

Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity

James P. Hewitson; John Grainger; Rick M. Maizels

Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory” products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system.


Immunity | 2013

Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes

Claudia V. Jakubzick; Emmanuel L. Gautier; Sophie L. Gibbings; Dorothy K. Sojka; Andreas Schlitzer; Theodore E. Johnson; Stoyan Ivanov; Qiaonan Duan; Shashi Bala; Tracy Condon; Nico van Rooijen; John Grainger; Yasmine Belkaid; Avi Ma’ayan; David W. H. Riches; Wayne M. Yokoyama; Florent Ginhoux; Peter M. Henson; Gwendalyn J. Randolph

It is thought that monocytes rapidly differentiate to macrophages or dendritic cells (DCs) upon leaving blood. Here we have shown that Ly-6C⁺ monocytes constitutively trafficked into skin, lung, and lymph nodes (LNs). Entry was unaffected in gnotobiotic mice. Monocytes in resting lung and LN had similar gene expression profiles to blood monocytes but elevated transcripts of a limited number of genes including cyclo-oxygenase-2 (COX-2) and major histocompatibility complex class II (MHCII), induced by monocyte interaction with endothelium. Parabiosis, bromodoxyuridine (BrdU) pulse-chase analysis, and intranasal instillation of tracers indicated that instead of contributing to resident macrophages in the lung, recruited endogenous monocytes acquired antigen for carriage to draining LNs, a function redundant with DCs though differentiation to DCs did not occur. Thus, monocytes can enter steady-state nonlymphoid organs and recirculate to LNs without differentiation to macrophages or DCs, revising a long-held view that monocytes become tissue-resident macrophages by default.


Immunity | 2011

The Role of Retinoic Acid in Tolerance and Immunity

Jason A. Hall; John Grainger; Sean P. Spencer; Yasmine Belkaid

Vitamin A elicits a broad array of immune responses through its metabolite, retinoic acid (RA). Recent evidence indicates that loss of RA leads to impaired immunity, whereas excess RA can potentially promote inflammatory disorders. In this review, we discuss recent advances showcasing the crucial contributions of RA to both immunological tolerance and the elicitation of adaptive immune responses. Further, we provide a comprehensive overview of the cell types and factors that control the production of RA and discuss how host perturbations may affect the ability of this metabolite to control tolerance and immunity or to instigate pathology.


Journal of Clinical Investigation | 2011

GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice

Elizabeth A. Wohlfert; John Grainger; Nicolas Bouladoux; Joanne E. Konkel; Guillaume Oldenhove; Carolina Hager Ribeiro; Jason A. Hall; Ryoji Yagi; Shruti Naik; Ravikiran Bhairavabhotla; William E. Paul; Rémy Bosselut; Gang Wei; Keji Zhao; Mohamed Oukka; Yasmine Belkaid

Tregs not only keep immune responses to autoantigens in check, but also restrain those directed toward pathogens and the commensal microbiota. Control of peripheral immune homeostasis by Tregs relies on their capacity to accumulate at inflamed sites and appropriately adapt to their local environment. To date, the factors involved in the control of these aspects of Treg physiology remain poorly understood. Here, we show that the canonical Th2 transcription factor GATA3 is selectively expressed in Tregs residing in barrier sites including the gastrointestinal tract and the skin. GATA3 expression in both murine and human Tregs was induced upon TCR and IL-2 stimulation. Although GATA3 was not required to sustain Treg homeostasis and function at steady state, GATA3 played a cardinal role in Treg physiology during inflammation. Indeed, the intrinsic expression of GATA3 by Tregs was required for their ability to accumulate at inflamed sites and to maintain high levels of Foxp3 expression in various polarized or inflammatory settings. Furthermore, our data indicate that GATA3 limits Treg polarization toward an effector T cell phenotype and acquisition of effector cytokines in inflamed tissues. Overall, our work reveals what we believe to be a new facet in the complex role of GATA3 in T cells and highlights what may be a fundamental role in controlling Treg physiology during inflammation.


Nature Medicine | 2013

Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection.

John Grainger; Elizabeth A. Wohlfert; Ivan J. Fuss; Nicolas Bouladoux; Michael H. Askenase; Fanny Legrand; Lily Koo; Jason M. Brenchley; Iain D C Fraser; Yasmine Belkaid

The commensal flora can promote both immunity to pathogens and mucosal inflammation. How commensal-driven inflammation is regulated in the context of infection remains poorly understood. Here, we show that during acute mucosal infection of mice with Toxoplasma gondii, inflammatory monocytes acquire a tissue-specific regulatory phenotype associated with production of the lipid mediator prostaglandin E2 (PGE2). Notably, in response to commensals, inflammatory monocytes can directly inhibit neutrophil activation in a PGE2-dependent manner. Further, in the absence of inflammatory monocytes, mice develop severe neutrophil-mediated pathology in response to pathogen challenge that can be controlled by PGE2 analog treatment. Complementing these findings, inhibition of PGE2 led to enhanced neutrophil activation and host mortality after infection. These data demonstrate a previously unappreciated dual action of inflammatory monocytes in controlling pathogen expansion while limiting commensal-mediated damage to the gut. Collectively, our results place inflammatory monocyte–derived PGE2 at the center of a commensal-driven regulatory loop required to control host-commensal dialog during pathogen-induced inflammation.


Journal of Proteomics | 2011

Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins.

James P. Hewitson; Yvonne Harcus; Janice Murray; Maaike van Agtmaal; Kara J. Filbey; John Grainger; Stephen Bridgett; Mark Blaxter; Peter D. Ashton; David A. Ashford; Rachel S. Curwen; R. Alan Wilson; Adam A. Dowle; Rick M. Maizels

The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.


Journal of Experimental Medicine | 2013

Retinoic acid controls the homeostasis of pre-cDC–derived splenic and intestinal dendritic cells

Christopher A. Klebanoff; Sean P. Spencer; Parizad Torabi-Parizi; John Grainger; Rahul Roychoudhuri; Yun Ji; Madhusudhanan Sukumar; Pawel Muranski; Christopher D. Scott; Jason A. Hall; Gabriela A. Ferreyra; Anthony J. Leonardi; Zachary A. Borman; Jinshan Wang; Douglas C. Palmer; Christoph Wilhelm; Rongman Cai; Junfeng Sun; Joseph L. Napoli; Robert L. Danner; Luca Gattinoni; Yasmine Belkaid; Nicholas P. Restifo

Retinoic acid is required to maintain pre-DC–derived CD11b+CD8α−Esamhigh dendritic cells (DCs) in the spleen and CD11b+CD103+ DCs in the gut.


Cell Host & Microbe | 2013

Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis.

Michael J. Molloy; John Grainger; Nicolas Bouladoux; Timothy W. Hand; Lily Koo; Shruti Naik; Mariam Quiñones; Amiran K. Dzutsev; Ji Liang Gao; Giorgio Trinchieri; Philip M. Murphy; Yasmine Belkaid

Shifts in commensal microbiota composition are emerging as a hallmark of gastrointestinal inflammation. In particular, outgrowth of γ-proteobacteria has been linked to the etiology of inflammatory bowel disease and the pathologic consequences of infections. Here we show that following acute Toxoplasma gondii gastrointestinal infection of mice, control of commensal outgrowth is a highly coordinated process involving both the host response and microbial signals. Notably, neutrophil emigration to the intestinal lumen results in the generation of organized intraluminal structures that encapsulate commensals and limit their contact with the epithelium. Formation of these luminal casts depends on the high-affinity N-formyl peptide receptor, Fpr1. Consequently, after infection, mice deficient in Fpr1 display increased microbial translocation, poor commensal containment, and increased mortality. Altogether, our study describes a mechanism by which the host rapidly contains commensal pathobiont outgrowth during infection. Further, these results reveal Fpr1 as a major mediator of host commensal interaction during dysbiosis.


Experimental Parasitology | 2012

Immune modulation and modulators in Heligmosomoides polygyrus infection

Rick M. Maizels; James P. Hewitson; Janice Murray; Yvonne Harcus; Blaise Dayer; Kara J. Filbey; John Grainger; Henry J. McSorley; Lisa A. Reynolds; Katherine A. Smith

The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.

Collaboration


Dive into the John Grainger's collaboration.

Top Co-Authors

Avatar

Yasmine Belkaid

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason A. Hall

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Bouladoux

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shruti Naik

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge