Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Greaves is active.

Publication


Featured researches published by John Greaves.


Chemosphere | 2010

Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes

Joonseon Jeong; Weihua Song; William J. Cooper; Jin-Young Jung; John Greaves

This study involves elucidating the destruction mechanisms of four tetracyclines via reactions with ()OH and solvated electrons (e(aq)(-)). The first step is to evaluate the bimolecular rate constants for the reaction of ()OH and e(aq)(-). Transient absorption spectra for the intermediates formed by the reaction of ()OH were also measured over the time period of 1-250micros to assist in selecting the appropriate wavelength for the absolute bimolecular reaction rate constants. For these four compounds, tetracycline, chlortetracycline, oxytetracycline, and doxycycline, the absolute rate constants with ()OH were (6.3+/-0.1)x10(9), (5.2+/-0.2)x10(9), (5.6+/-0.1)x10(9), and (7.6+/-0.1)x10(9) M(-1) s(-1), and for e(aq)(-) were (2.2+/-0.1)x10(10), (1.3+/-0.2)x10(10), (2.3+/-0.1)x10(10), and (2.5+/-0.1)x10(10) M(-1) s(-1), respectively. The efficiencies for ()OH reaction with the four tetracyclines ranged from 32% to 60%. The efficiencies for e(aq)(-) reaction were 15-29% except for chlortetracycline which was significantly higher (97%) than the other tetracyclines in spite of the similar reaction rate constants for e(aq)(-) in all cases. To evaluate the use of advanced oxidation/reduction processes for the destruction of tetracyclines it is necessary to have reaction rates, reaction efficiencies and destruction mechanisms. This paper is the first step in eventually realizing the formulation of a detailed kinetic destruction model for these four tetracycline antibiotics.


Journal of the American Chemical Society | 2010

Formation, Structure, and EPR Detection of a High Spin FeIV—Oxo Species Derived from Either an FeIII—Oxo or FeIII—OH Complex

David C. Lacy; Rupal Gupta; Kari L. Stone; John Greaves; Joseph W. Ziller; Michael P. Hendrich; A. S. Borovik

High spin oxoiron(IV) complexes have been proposed to be a key intermediate in numerous nonheme metalloenzymes. The successful detection of similar complexes has been reported for only two synthetic systems. A new synthetic high spin oxoiron(IV) complex is now reported that can be prepared from a well-characterized oxoiron(III) species. This new oxoiron(IV) complex can also be prepared from a hydroxoiron(III) species via a proton-coupled electron transfer process--a first in synthetic chemistry. The oxoiron(IV) complex has been characterized with a variety of spectroscopic methods: FTIR studies showed a feature associated with the Fe-O bond at nu(Fe(16)O) = 798 cm(-1) that shifted to 765 cm(-1) in the (18)O complex; Mossbauer experiments show a signal with an delta = 0.02 mm/s and |DeltaE(Q)| = 0.43 mm/s, electronic parameters consistent with an Fe(IV) center, and optical spectra had visible bands at lambda(max) = 440 (epsilon(M) = 3100), 550 (epsilon(M) = 1900), and 808 (epsilon(M) = 280) nm. In addition, the oxoiron(IV) complex gave the first observable EPR features in the parallel-mode EPR spectrum with g-values at 8.19 and 4.06. A simulation for an S = 2 species with D = 4.0(5) cm(-1), E/D = 0.03, sigma(E/D) = 0.014, and g(z) = 2.04 generates a fit that accurately predicted the intensity, line shape, and position of the observed signals. These results showed that EPR spectroscopy can be a useful method for determining the properties of high spin oxoiron(IV) complexes. The oxoiron(IV) complex was crystallized at -35 degrees C, and its structure was determined by X-ray diffraction methods. The complex has a trigonal bipyramidal coordination geometry with the Fe-O unit positioned within a hydrogen bonding cavity. The Fe(IV)-O unit bond length is 1.680(1) A, which is the longest distance yet reported for a monomeric oxoiron(IV) complex.


Journal of Physical Chemistry A | 2009

Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: kinetic studies and degradation mechanism.

Hanoz Santoke; Weihua Song; William J. Cooper; John Greaves; George E. Miller

The presence of pharmaceutically active compounds (PhACs) in aquatic systems is an emerging environmental issue and poses a potential threat to ecosystems and human health. Unfortunately, current water treatment techniques do not efficiently remove all of the PhACs, which results in the occurrence of such compounds in surface and ground waters. Advanced oxidation/reduction processes (AO/RPs) which utilize free radical reactions to directly degrade chemical contaminants are alternatives to traditional water treatment methods. This study reports the absolute bimolecular reaction rate constants for three pharmaceutical compounds (fibrates), clofibric acid, bezafibrate, and gemfibrozil, with the hydroxyl radical (*OH) and hydrated electron (e(-)(aq)). The bimolecular reaction rate constants for *OH were (6.98 +/- 0.12) x 10(9), (8.00 +/- 0.22) x 10(9), and (10.0 +/- 0.6) x 10(9), and for e(-)(aq) were (6.59 +/- 0.43) x 10(8), (112 +/- 3) x 10(8), and (6.26 +/- 0.58) x 10(8), for clofibric acid, bezafibrate, and gemfibrozil, respectively. Transient spectra were obtained for the intermediate radicals produced by the hydroxyl radical reactions. In addition, preliminary degradation mechanisms and major products were elucidated using (137)Cs gamma-irradiation and LC-MS. These data are required for evaluating the potential use of AO/RPs for the destruction of these compounds in treating water for various purposes.


Journal of the American Chemical Society | 2011

Catalytic Reduction of Dioxygen to Water with a Monomeric Manganese Complex at Room Temperature

Ryan L. Shook; Sonja M. Peterson; John Greaves; Curtis E. Moore; Arnold L. Rheingold; A. S. Borovik

There have been numerous efforts to incorporate dioxygen into chemical processes because of its economic and environmental benefits. The conversion of dioxygen to water is one such example, having importance in both biology and fuel cell technology. Metals or metal complexes are usually necessary to promote this type of reaction and several systems have been reported. However, mechanistic insights into this conversion are still lacking, especially the detection of intermediates. Reported herein is the first example of a monomeric manganese(II) complex that can catalytically convert dioxygen to water. The complex contains a tripodal ligand with two urea groups and one carboxyamidopyridyl unit; this ligand creates an intramolecular hydrogen-bonding network within the secondary coordination sphere that aids in the observed chemistry. The manganese(II) complex is five-coordinate with an N(4)O primary coordination sphere; the oxygen donor comes from the deprotonated carboxyamido moiety. Two key intermediates were detected and characterized: a peroxo-manganese(III) species and a hybrid oxo/hydroxo-manganese(III) species (1). The formulation of 1 was based on spectroscopic and analytical data, including an X-ray diffraction analysis. Reactivity studies showed dioxygen was catalytically converted to water in the presence of reductants, such as diphenylhydrazine and hydrazine. Water was confirmed as a product in greater than 90% yield. A mechanism was proposed that is consistent with the spectroscopy and product distribution, in which the carboxyamido group switches between a coordinated ligand and a basic site to scavenge protons produced during the catalytic cycle. These results highlight the importance of incorporating intramolecular functional groups within the secondary coordination sphere of metal-containing catalysts.


Environmental Science & Technology | 2011

Removal of Pharmaceutical and Personal Care Products from Reverse Osmosis Retentate Using Advanced Oxidation Processes

Sihem Ben Abdelmelek; John Greaves; Kenneth P. Ishida; William J. Cooper; Weihua Song

The application of reverse osmosis (RO) in water intended for reuse is promising for assuring high water quality. However, one significant disadvantage is the need to dispose of the RO retentate (or reject water). Studies focusing on Pharmaceutical and Personal Care Products (PPCPs) have raised questions concerning their concentrations in the RO retentate. Advanced oxidation processes (AOPs) are alternatives for destroying these compounds in retentate that contains high concentration of effluent organic matter (EfOM) and other inorganic constituents. Twenty-seven PPCPs were screened in a RO retentate using solid phase extraction (SPE) and UPLC-MS/MS, and detailed degradation studies for 14 of the compounds were obtained. Based on the absolute hydroxyl radical (HO•) reaction rate constants for individual pharmaceutical compounds, and that of the RO retentate (EfOM and inorganic constituents), it was possible to model their destruction. Using excitation-emission matrix (EEM) fluorescence spectroscopy, the HO• oxidation of the EfOM could be observed through decreases in the retentate fluorescence. The decrease in the peak normally associated with proteins correlated well with the removal of the pharmaceutical compounds. These results suggest that fluorescence may be a suitable parameter for monitoring the degradation of PPCPs by AOPs in RO retentates.


Water Research | 2012

Trimethoprim: kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment.

Xingzhang Luo; Zheng Zheng; John Greaves; William J. Cooper; Weihua Song

Trimethoprim (TMP), a bacteriostatic antibiotic, has recently been detected in wastewater and surface waters. In this study the sunlight mediated photochemical fate, and treatment using advanced oxidation and reduction (free radical) processes, have been investigated with respect to their effect on TMP. Photochemical fate, in the presence of humic acid, and advanced oxidation treatment both involve the hydroxyl radical (OH) as one of the reactive species of interest. Another reactive oxygen species, singlet oxygen (1O2), may also be important in the photochemical fate of TMP. The bimolecular reaction rate constants of TMP with 1O2 and OH were evaluated to be (3.2±0.2)×10(6) M(-1) s(-1) and 8.66×10(9) M(-1) s(-1), respectively. The reaction kinetics for the sub-structural moieties of TMP, 1,2,3-trimethoxybenzene (TMBz) and 2,4-diaminoprimidine (DAP), was evaluated to facilitate an understanding of the loss mechanisms. For TMBz and DAP the reaction rate constants with 1O2 were <1.0×10(4) and (3.0±0.1)×10(6) M(-1) s(-1), while with OH they were 8.12×10(9) and 1.64×10(9) M(-1) s(-1), respectively. The data suggests that the 1O2 attacks the DAP and the OH radical attacks the TMBz moiety. However, for TMP, 1O2 and OH reactions accounted for only ∼19% and ∼6%, of its total photodegradation, respectively. Therefore, the reaction of TMP with excited state natural organic matter is postulated as a significant degradation pathway for the loss of TMP in sunlit waters containing natural organic matter. There was no effect of pH on the direct or indirect photolysis of TMP. To complete the study for reductive treatment processes, the solvated electron reaction rates for the destruction of TMP, TMBz and DAP were also evaluated. The absolute bimolecular reaction rates obtained were, (13.6±0.01)×10(9), (6.36±0.11)×10(7) and (10.1±0.01)×10(9) M(-1) s(-1), respectively.


Journal of Physical Chemistry A | 2008

Free-Radical Destruction of β-Lactam Antibiotics in Aqueous Solution

Weihua Song; Weisang Chen; William J. Cooper; John Greaves; George E. Miller

Many pharmaceutical compounds and metabolites are being found in surface and ground waters, indicating their ineffective removal by conventional wastewater treatment technologies. Advanced oxidation/reduction processes (AO/RPs), which utilize free-radical reactions to directly degrade chemical contaminants, are alternatives to traditional water treatment. This study reports the absolute rate constants for reaction of three beta-lactam antibiotics (penicillin G, penicillin V, amoxicillin) and a model compound (+)-6-aminopenicillanic acid with the two major AO/RP reactive species: hydroxyl radical ((*)OH) and hydrated electron (e(-)aq). The bimolecular reaction rate constants (M(-1) s(-1)) for penicillin G, penicillin V, amoxicillin, and (+)-6-aminopenicillanic acid for (*)OH were (7.97 +/- 0.11) x 10(9), (8.76 +/- 0.28) x 10(9), (6.94 +/- 0.44) x 10(9), and (2.40 +/- 0.05) x 10(9) and for e(-)aq were (3.92 +/- 0.10) x 10(9), (5.76 +/- 0.24) x 10(9), (3.47 +/- 0.07) x 10(9), and (3.35 +/- 0.06) x 10(9), respectively. To provide a better understanding of the decomposition of the intermediate radicals produced by hydroxyl radical reactions, transient absorption spectra were observed from 1 to 100 micros. In addition, preliminary degradation mechanisms and major products were elucidated using (137)Cs gamma irradiation and LC-MS. These data are required for both evaluating the potential use of AO/RPs for the destruction of these compounds and studies of their fate and transport in surface waters where radical chemistry may be important in assessing their lifetime.


Protein Science | 2011

Computational design and selections for an engineered, thermostable terpene synthase

Juan E. Diaz; Chun-Shi Lin; Kazuyoshi Kunishiro; Birte K. Feld; Sara K. Avrantinis; Jonathan Bronson; John Greaves; Jeffery G. Saven; Gregory A. Weiss

Terpenoids include structurally diverse antibiotics, flavorings, and fragrances. Engineering terpene synthases for control over the synthesis of such compounds represents a long sought goal. We report computational design, selections, and assays of a thermostable mutant of tobacco 5‐epi‐aristolochene synthase (TEAS) for the catalysis of carbocation cyclization reactions at elevated temperatures. Selection for thermostability included proteolytic digestion followed by capture of intact proteins. Unlike the wild‐type enzyme, the mutant TEAS retains enzymatic activity at 65°C. The thermostable terpene synthase variant denatures above 80°C, approximately twice the temperature of the wild‐type enzyme.


Environmental Science & Technology | 2010

Identification of Organic Nitrates in the NO3 Radical Initiated Oxidation of α-Pinene by Atmospheric Pressure Chemical Ionization Mass Spectrometry

Véronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; John Greaves; Barbara J. Finlayson-Pitts

The gas-phase reactions of nitrate radicals (NO3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NOx downwind. We report here studies of the reaction of NO3 with alpha-pinene at 1 atm in dry synthetic air (relative humidity approximately 3%) and at 298 K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the product mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GC-MS and by APCI time-of-flight mass spectrometry (APCI-ToF-MS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane-2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl)acetaldehyde. Furthermore, there was an additional first-generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NOx.


Analytical Chemistry | 2010

Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis.

Emily A. Bruns; Véronique Perraud; John Greaves; Barbara J. Finlayson-Pitts

Secondary organic aerosols (SOA) formed in the atmosphere from the condensation of semivolatile oxidation products are a significant component of airborne particles which have deleterious effects on health, visibility, and climate. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS) is applied for the first time to the identification of organics in particles from laboratory systems as well as from ambient air. SOA were generated in the laboratory from the ozonolysis of alpha-pinene and isoprene, as well as from NO(3) oxidation of alpha-pinene, and ambient air was sampled at forested and suburban sites. Particles were collected by impaction on ZnSe disks, analyzed by Fourier transform-infrared spectroscopy (FT-IR) and then transferred to an ASAP-MS probe for further analysis. ASAP-MS data for the laboratory-generated samples show peaks from well-known products of these reactions, and higher molecular weight oligomers are present in both laboratory and ambient samples. Oligomeric products are shown to be present in the NO(3) reaction products for the first time. A major advantage of this technique is that minimal sample preparation is required, and complementary information from nondestructive techniques such as FT-IR can be obtained on the same samples. In addition, a dedicated instrument is not required for particle analysis. This work establishes that ASAP-MS will be useful for identification of organic components of SOA in a variety of field and laboratory studies.

Collaboration


Dive into the John Greaves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Cooper

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. Small

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Carpenter

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. McClain

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge