Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Greenwood is active.

Publication


Featured researches published by John Greenwood.


The FASEB Journal | 2005

Blood-brain barrier-specific properties of a human adult brain endothelial cell line

Babette B. Weksler; E. A. Subileau; N. Perrière; P. Charneau; Karen Holloway; M. Leveque; H. Tricoire-Leignel; A. Nicotra; Sandrine Bourdoulous; Patric Turowski; David Male; Françoise Roux; John Greenwood; Ignacio A. Romero; P. O. Couraud

Establishment of a human model of the blood‐brain barrier has proven to be a difficult goal. To accomplish this, normal human brain endothelial cells were transduced by lentiviral vectors incorporating human telomerase or SV40 T antigen. Among the many stable immortalized clones obtained by sequential limiting dilution cloning of the transduced cells, one was selected for expression of normal endothelial markers, including CD31, VE cadherin, and von Willebrand factor. This cell line, termed hCMEC/D3, showed a stable normal karyotype, maintained contact‐inhibited monolayers in tissue culture, exhibited robust proliferation in response to endothelial growth factors, and formed capillary tubes in matrix but no colonies in soft agar. hCMEC/D3 cells expressed telomerase and grew indefinitely without phenotypic dedifferentiation. These cells expressed chemokine receptors, up‐regulated adhesion molecules in response to inflammatory cytokines, and demonstrated blood‐brain barrier characteristics, including tight junctional proteins and the capacity to actively exclude drugs. hCMEC/D3 are excellent candidates for studies of blood‐brain barrier function, the responses of brain endothelium to inflammatory and infectious stimuli, and the interaction of brain endothelium with lymphocytes or tumor cells. Thus, hCMEC/D3 represents the first stable, fully characterized, well‐differentiated human brain endothelial cell line and should serve as a widely usable research tool.


Nature Reviews Immunology | 2006

Statin therapy and autoimmune disease: from protein prenylation to immunomodulation

John Greenwood; Lawrence Steinman; Scott S. Zamvil

Statins have been prescribed extensively for their cholesterol-lowering properties and efficacy in cardiovascular disease. However, compelling evidence now exists that statins also have extensive immunomodulatory properties that operate independently of lipid lowering. Consequently, much attention has been directed towards their potential as therapeutic agents for the treatment of autoimmune disease. Modulation of post-translational protein prenylation seems to be a key mechanism by which statins alter immune function. In this Review, the effect of statin therapy on immune function, and how this relates to the pathogenesis of autoimmune disease, is reviewed alongside current opinion of what the key biological targets of statins are.


Journal of Immunology | 2000

ICAM-1-Coupled Cytoskeletal Rearrangements and Transendothelial Lymphocyte Migration Involve Intracellular Calcium Signaling in Brain Endothelial Cell Lines

Sandrine Etienne-Manneville; Jean-Baptiste Manneville; Peter Adamson; Barry Wilbourn; John Greenwood; Pierre-Olivier Couraud

Endothelium of the cerebral blood vessels, which constitutes the blood-brain barrier, controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells using two rat brain endothelial cell lines (RBE4 and GP8), we report in this paper that ICAM-1 cross-linking induces a sustained tyrosine phosphorylation of the phosphatidylinositol-phospholipase C (PLC)γ1, with a concomitant increase in both inositol phosphate production and intracellular calcium concentration. Our results suggest that PLC are responsible, via a calcium- and protein kinase C (PKC)-dependent pathway, for p60Src activation and tyrosine phosphorylation of the p60Src substrate, cortactin. PKCs are also required for tyrosine phosphorylation of the cytoskeleton-associated proteins, focal adhesion kinase and paxillin, but not for ICAM-1-coupled p130Cas phosphorylation. PKC’s activation is also necessary for stress fiber formation induced by ICAM-1 cross-linking. Finally, cell pretreatment with intracellular calcium chelator or PKC inhibitors significantly diminishes transmonolayer migration of activated T lymphocytes, without affecting their adhesion to brain endothelial cells. In summary, our data demonstrate that ICAM-1 cross-linking induces calcium signaling which, via PKCs, mediates phosphorylation of actin-associated proteins and cytoskeletal rearrangement in brain endothelial cell lines. Our results also indicate that these calcium-mediated intracellular events are essential for lymphocyte migration through the blood-brain barrier.


The FASEB Journal | 2003

Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis

John Greenwood; Claire E. Walters; Gareth Pryce; Naheed Kanuga; Evelyne Beraud; David Baker; Peter Adamson

Neuroinflammatory diseases, such as multiple sclerosis (MS), result from aberrant leukocyte traffic into the central nervous system (CNS). To breach the specialized blood‐brain barrier, activated leukocytes interact with CNS endothelial cells (EC) and activate a CD54‐mediated signaling pathway controlling the Rho GTPase. To function correctly Rho requires posttranslational prenylation, and this can be inhibited by depleting the supply of isoprenoids through inhibition of the cholesterol synthesis pathway with 3‐hydroxy‐3‐methylglutaryl CoA reductase (HMG‐CoA reductase) inhibitors (statins). Here we show that treatment of brain EC in vitro with lovastatin inhibits Rho‐mediated transendothelial T cell migration. This effect can be reversed by supplementation with mevalonolactone, the downstream product of HMG‐CoA reductase, or by ectopic expression of myristoylated Rho, which remains active in the absence of prenylation. In a relapsing‐remitting mouse model of MS, lovastatin treatment inhibited leukocyte migration into the CNS and significantly attenuated the development of both acute and relapsing clinical disease. These studies demonstrate that the indirect pharmacological inhibition of Rho proteins in brain EC by statins can inhibit a key stage in the pathogenesis of neuroinflammation, namely leukocyte migration across the blood‐brain barrier. These studies demonstrate a novel effect of statins in modulating the immune response in neuroinflammtory diseases and may provide additional rationale for their use in the treatment of MS.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats

Raymond D. Lund; Peter Adamson; Yves Sauvé; David Keegan; Sergej V. Girman; Shaomei Wang; Helen L Winton; Naheed Kanuga; Anthony Kwan; Laurence Beauchène; Anne Zerbib; Len Hetherington; Pierre-Olivier Couraud; Peter J. Coffey; John Greenwood

Royal College of Surgeons rats are genetically predisposed to undergo significant visual loss caused by a primary dysfunction of retinal pigment epithelial (RPE) cells. By using this model, we have examined the efficacy of subretinal transplantation of two independent human RPE cell lines each exhibiting genetic modifications that confer long-term stability in vitro. The two cell lines, a spontaneously derived cell line (ARPE19) and an extensively characterized genetically engineered human RPE cell line (h1RPE7), which expresses SV40 large T (tumor) antigen, were evaluated separately. Both lines result in a significant preservation of visual function as assessed by either behavioral or physiological techniques. This attenuation of visual loss correlates with photoreceptor survival and the presence of donor cells in the areas of rescued photoreceptors at 5 months postgrafting (6 months of age). These results demonstrate the potential of genetically modified human RPE cells for ultimate application in therapeutic transplantation strategies for retinal degenerative diseases caused by RPE dysfunction.


Progress in Retinal and Eye Research | 2007

RPE transplantation and its role in retinal disease.

Lyndon da Cruz; Fred K. Chen; Ahmad Ahmado; John Greenwood; Peter J. Coffey

Retinal pigment epithelial (RPE) transplantation aims to restore the subretinal anatomy and re-establish the critical interaction between the RPE and the photoreceptor, which is fundamental to sight. The field has developed over the past 20 years with advances coming from a large body of animal work and more recently a considerable number of human trials. Enormous progress has been made with the potential for at least partial restoration of visual function in both animal and human clinical work. Diseases that have been treated with RPE transplantation demonstrating partial reversal of vision loss include primary RPE dystrophies such as the merTK dystrophy in the Royal College of Surgeons (RCS) rat and in humans, photoreceptor dystrophies as well as complex retinal diseases such as atrophic and neovascular age-related macular degeneration (AMD). Unfortunately, in the human trials the visual recovery has been limited at best and full visual recovery has not been demonstrated. Autologous full-thickness transplants have been used most commonly and effectively in human disease but the search for a cell source to replace autologous RPE such as embryonic stem cells, marrow-derived stem cells, umbilical cord-derived cells as well as immortalised cell lines continues. The combination of cell transplantation with other modalities of treatment such as gene transfer remains an exciting future prospect. RPE transplantation has already been shown to be capable of restoring the subretinal anatomy and improving photoreceptor function in a variety of retinal diseases. In the near future, refinements of current techniques are likely to allow RPE transplantation to enter the mainstream of retinal therapy at a time when the treatment of previously blinding retinal diseases is finally becoming a reality.


Nature Neuroscience | 2002

Long-term preservation of cortically dependent visual function in RCS rats by transplantation.

Peter J. Coffey; S. Girman; Shaomei Wang; L Hetherington; David Keegan; Peter C. Adamson; John Greenwood; Raymond D. Lund

Cell transplantation is one way of limiting the progress of retinal degeneration in animal models of blinding diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Here we transplanted a human retinal pigment epithelial (RPE) cell line into the subretinal space of one such model, the Royal College of Surgeons (RCS) rat, and showed, using head tracking to moving stripes and pattern discrimination in conjunction with single-unit cortical physiology, that cortically mediated vision can be preserved with this treatment.


Neuropathology and Applied Neurobiology | 2011

Review: Leucocyte–endothelial cell crosstalk at the blood–brain barrier: A prerequisite for successful immune cell entry to the brain

John Greenwood; S. J. Heasman; Jorge Ivan Alvarez; Alexandre Prat; Ruth Lyck; Britta Engelhardt

J. Greenwood, S. J. Heasman, J. I. Alvarez, A. Prat, R. Lyck and B. Engelhardt (2011) Neuropathology and Applied Neurobiology37, 24–39
Leucocyte–endothelial cell crosstalk at the blood–brain barrier: A prerequisite for successful immune cell entry to the brain


Journal of Neuroimmunology | 1996

SV40 large T immortalised cell lines of the rat blood-brain and blood-retinal barriers retain their phenotypic and immunological characteristics

John Greenwood; Gareth Pryce; L. Devine; David Male; W.L.C dos Santos; Virginia L. Calder; Peter Adamson

In the central nervous system the blood-brain and blood-retinal barriers (BBB and BRB respectively) are instrumental in maintaining homeostasis of the neural parenchyma and controlling leucocyte traffic. These cellular barriers are formed primarily by the vascular endothelium of the brain and retina although in the latter the pigmented epithelial cells also form part of the barrier. From primary cultures of rat brain endothelium, retinal endothelium and retinal pigment epithelium (RPE) we have generated temperature sensitive SV40 large T immortalised cell lines. Clones of brain (GP8.3) and retinal (JG2.1) endothelia and RPE (LD7.4) have been derived from parent lines that express the large T antigen at the permissive temperature. The endothelial cell (EC) lines expressed P-glycoprotein, GLUT-1, the transferrin receptor, von Willebrand factor and the RECA-1 antigen and exhibited high affinity uptake of acetylated LDL and stained positive with the lectin Griffonia simplicifolia. The RPE cell line was positive for cytokeratins and for the rat RPE antigen RET-PE2. All the cell lines expressed major histocompatibility complex (MHC) class 1 and intercellular adhesion molecule (ICAM)-1 constitutively and could be induced to express MHC class II and vascular cell adhesion molecule (VCAM)-1 following cytokine activation. The EC also expressed platelet endothelial cell adhesion molecule (PECAM)-1. Monolayers of these cells could support the migration of antigen-specific T cell lines. The generation of immortalised cell lines derived from the rat BBB and BRB should prove to be useful tools for the study of these specialised cellular barriers.


Neuroscience Letters | 2003

Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells

Ignacio A. Romero; Katrina Radewicz; Emmanuelle Jubin; C. C. Michel; John Greenwood; Pierre-Olivier Couraud; Peter Adamson

The blood-brain barrier (BBB) plays an important role in controlling the passage of molecules from the blood to the extracellular fluid environment of the brain. An immortalised rat brain endothelial cell line (GPNT) was used to investigate the mechanisms underlying dexamethasone-induced decrease in paracellular permeability. Following treatment with 1 microM dexamethasone there was a decrease in transmonolayer paracellular permeability mainly to sucrose, fluorescein and dextrans of up to 20 KDa. According to pore theory, these differences in permeability were consistent with a decrease in the number of pores between brain endothelial cells. This effect was accompanied by a concentration of filamentous actin and cortactin to the cell periphery. Concomitantly, the continuity of the tight junctional protein ZO-1 at the cell borders was improved and was associated with an increase in both ZO-1 and occludin expression. By contrast, the expression and distribution of adherens junctional proteins such as beta-catenin and p100/p120 remained unchanged. These observations suggest that glucocorticoids induce a more differentiated BBB phenotype in cultured brain endothelial cells through modification of tight junction structure.

Collaboration


Dive into the John Greenwood's collaboration.

Top Co-Authors

Avatar

Stephen E. Moss

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Coffey

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patric Turowski

University College London

View shared research outputs
Top Co-Authors

Avatar

Phillip Luthert

University College London

View shared research outputs
Top Co-Authors

Avatar

Xiaomeng Wang

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge