John Guiver
Microsoft
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Guiver.
web search and data mining | 2008
Michael J. Taylor; John Guiver; Stephen E. Robertson; Thomas P. Minka
We address the problem of learning large complex ranking functions. Most IR applications use evaluation metrics that depend only upon the ranks of documents. However, most ranking functions generate document scores, which are sorted to produce a ranking. Hence IR metrics are innately non-smooth with respect to the scores, due to the sort. Unfortunately, many machine learning algorithms require the gradient of a training objective in order to perform the optimization of the model parameters,and because IR metrics are non-smooth,we need to find a smooth proxy objective that can be used for training. We present a new family of training objectives that are derived from the rank distributions of documents, induced by smoothed scores. We call this approach SoftRank. We focus on a smoothed approximation to Normalized Discounted Cumulative Gain (NDCG), called SoftNDCG and we compare it with three other training objectives in the recent literature. We present two main results. First, SoftRank yields a very good way of optimizing NDCG. Second, we show that it is possible to achieve state of the art test set NDCG results by optimizing a soft NDCG objective on the training set with a different discount function
international world wide web conferences | 2014
Matteo Venanzi; John Guiver; Gabriella Kazai; Pushmeet Kohli; Milad Shokouhi
This paper addresses the problem of extracting accurate labels from crowdsourced datasets, a key challenge in crowdsourcing. Prior work has focused on modeling the reliability of individual workers, for instance, by way of confusion matrices, and using these latent traits to estimate the true labels more accurately. However, this strategy becomes ineffective when there are too few labels per worker to reliably estimate their quality. To mitigate this issue, we propose a novel community-based Bayesian label aggregation model, CommunityBCC, which assumes that crowd workers conform to a few different types, where each type represents a group of workers with similar confusion matrices. We assume that each worker belongs to a certain community, where the workers confusion matrix is similar to (a perturbation of) the communitys confusion matrix. Our model can then learn a set of key latent features: (i) the confusion matrix of each community, (ii) the community membership of each user, and (iii) the aggregated label of each item. We compare the performance of our model against established aggregation methods on a number of large-scale, real-world crowdsourcing datasets. Our experimental results show that our CommunityBCC model consistently outperforms state-of-the-art label aggregation methods, requiring, on average, 50% less data to pass the 90% accuracy mark.
international conference on machine learning | 2009
John Guiver; Edward Snelson
This paper gives an efficient Bayesian method for inferring the parameters of a Plackett-Luce ranking model. Such models are parameterised distributions over rankings of a finite set of objects, and have typically been studied and applied within the psychometric, sociometric and econometric literature. The inference scheme is an application of Power EP (expectation propagation). The scheme is robust and can be readily applied to large scale data sets. The inference algorithm extends to variations of the basic Plackett-Luce model, including partial rankings. We show a number of advantages of the EP approach over the traditional maximum likelihood method. We apply the method to aggregate rankings of NASCAR racing drivers over the 2002 season, and also to rankings of movie genres.
ACM Transactions on Information Systems | 2009
John Guiver; Stefano Mizzaro; Stephen E. Robertson
We consider the issue of evaluating information retrieval systems on the basis of a limited number of topics. In contrast to statistically-based work on sample sizes, we hypothesize that some topics or topic sets are better than others at predicting true system effectiveness, and that with the right choice of topics, accurate predictions can be obtained from small topics sets. Using a variety of effectiveness metrics and measures of goodness of prediction, a study of a set of TREC and NTCIR results confirms this hypothesis, and provides evidence that the value of a topic set for this purpose does generalize.
Gynecologic Oncology | 1977
Onno Zoeter; Michael J. Taylor; Edward Snelson; John Guiver; Nick Craswell; Martin Szummer
A system and method are described for the access and retrieval of information, which integrates television, video and/or similar sources with the information resources available on the Internet. This invention permits a user to select an item displayed on a television screen and, without significant interruption, order the item or request additional information on the item or provide feedback to the television source signal provider, for example, the television network or advertiser.
symposium on principles of programming languages | 2014
Andrew D. Gordon; Thore Graepel; Nicolas Rolland; Claudio V. Russo; Johannes Borgström; John Guiver
We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design of our language, Tabular, complete with formal semantics and type system. A rich series of examples illustrates the expressiveness of Tabular. We report an implementation, and show evidence of the succinctness of our notation relative to current best practice. Finally, we describe and verify a transformation of Tabular schemas so as to predict missing values in a concrete database. The ability to query for missing values provides a uniform interface to a wide variety of tasks, including classification, clustering, recommendation, and ranking.
acm international conference on interactive experiences for tv and online video | 2014
Allison June-Barlow Chaney; Mike Gartrell; Jake M. Hofman; John Guiver; Noam Koenigstein; Pushmeet Kohli; Ulrich Paquet
We present a large-scale study of television viewing habits, focusing on how individuals adapt their preferences when consuming content with others. While there has been a great deal of research on modeling individual preferences, there has been considerably less work studying the preferences of groups, due mostly to the difficulty of collecting group data. In contrast to most past work that has relied either on small-scale surveys, prototypes, or a relatively limited amount of group preference data, we explore more than 4 million logged household views paired with individual-level demographic and co-viewing information. Our analysis reveals how engagement in group viewing varies by viewer and content type, and how viewing patterns shift across various group contexts. Furthermore, we leverage this large-scale dataset to directly estimate how individual preferences are combined in group settings, finding subtle deviations from traditional models of preference aggregation. We present a simple model which captures these effects and discuss the impact of these findings on the design of group recommendation systems.
european conference on machine learning | 2014
Bar Shalem; John Guiver; Christopher M. Bishop
We propose a probabilistic graphical model for predicting student attainment in web-based education. We empirically evaluate our model on a crowdsourced dataset with students and teachers; Teachers prepared lessons on various topics. Students read lessons by various teachers and then solved a multiple choice exam. Our model gets input data regarding past interactions between students and teachers and past student attainment. It then estimates abilities of students, competence of teachers and difficulty of questions, and predicts future student outcomes. We show that our models predictions are more accurate than heuristic approaches. We also show how demographic profiles and personality traits correlate with student performance in this task. Finally, given a limited pool of teachers, we propose an approach for using information from our model to maximize the number of students passing an exam of a given difficulty, by optimally assigning teachers to students. We evaluate the potential impact of our optimization approach using a simulation based on our dataset, showing an improvement in the overall performance.
international conference on machine learning | 2012
Thore Graepel; Thomas P. Minka; John Guiver
PLOS Medicine | 2014
Danielle Belgrave; Raquel Granell; Angela Simpson; John Guiver; Christopher M. Bishop; Iain Buchan; A. John Henderson; Adnan Custovic