Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Gulliver is active.

Publication


Featured researches published by John Gulliver.


BMJ | 2013

Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study

Anna Hansell; Marta Blangiardo; Lea Fortunato; Sarah Floud; Kees de Hoogh; Daniela Fecht; Rebecca Ghosh; Helga Elvira Laszlo; Clare Pearson; Linda Beale; Sean Beevers; John Gulliver; Nicky Best; Sylvia Richardson; Paul Elliott

Objective To investigate the association of aircraft noise with risk of stroke, coronary heart disease, and cardiovascular disease in the general population. Design Small area study. Setting 12 London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport in London. Population About 3.6 million residents living near Heathrow airport. Risks for hospital admissions were assessed in 12 110 census output areas (average population about 300 inhabitants) and risks for mortality in 2378 super output areas (about 1500 inhabitants). Main outcome measures Risk of hospital admissions for, and mortality from, stroke, coronary heart disease, and cardiovascular disease, 2001-05. Results Hospital admissions showed statistically significant linear trends (P<0.001 to P<0.05) of increasing risk with higher levels of both daytime (average A weighted equivalent noise 7 am to 11 pm, LAeq,16h) and night time (11 pm to 7 am, Lnight) aircraft noise. When areas experiencing the highest levels of daytime aircraft noise were compared with those experiencing the lowest levels (>63 dB v ≤51 dB), the relative risk of hospital admissions for stroke was 1.24 (95% confidence interval 1.08 to 1.43), for coronary heart disease was 1.21 (1.12 to 1.31), and for cardiovascular disease was 1.14 (1.08 to 1.20) adjusted for age, sex, ethnicity, deprivation, and a smoking proxy (lung cancer mortality) using a Poisson regression model including a random effect term to account for residual heterogeneity. Corresponding relative risks for mortality were of similar magnitude, although with wider confidence limits. Admissions for coronary heart disease and cardiovascular disease were particularly affected by adjustment for South Asian ethnicity, which needs to be considered in interpretation. All results were robust to adjustment for particulate matter (PM10) air pollution, and road traffic noise, possible for London boroughs (population about 2.6 million). We could not distinguish between the effects of daytime or night time noise as these measures were highly correlated. Conclusion High levels of aircraft noise were associated with increased risks of stroke, coronary heart disease, and cardiovascular disease for both hospital admissions and mortality in areas near Heathrow airport in London. As well as the possibility of causal associations, alternative explanations such as residual confounding and potential for ecological bias should be considered.


European Heart Journal | 2015

Road traffic noise is associated with increased cardiovascular morbidity and mortality and all-cause mortality in London.

Jaana I. Halonen; Anna Hansell; John Gulliver; David Morley; Marta Blangiardo; Daniela Fecht; Mireille B. Toledano; Sean Beevers; H R Anderson; Frank J. Kelly; Cathryn Tonne

Aims Road traffic noise has been associated with hypertension but evidence for the long-term effects on hospital admissions and mortality is limited. We examined the effects of long-term exposure to road traffic noise on hospital admissions and mortality in the general population. Methods and results The study population consisted of 8.6 million inhabitants of London, one of Europes largest cities. We assessed small-area-level associations of day- (7:00–22:59) and nighttime (23:00–06:59) road traffic noise with cardiovascular hospital admissions and all-cause and cardiovascular mortality in all adults (≥25 years) and elderly (≥75 years) through Poisson regression models. We adjusted models for age, sex, area-level socioeconomic deprivation, ethnicity, smoking, air pollution, and neighbourhood spatial structure. Median daytime exposure to road traffic noise was 55.6 dB. Daytime road traffic noise increased the risk of hospital admission for stroke with relative risk (RR) 1.05 [95% confidence interval (CI): 1.02–1.09] in adults, and 1.09 (95% CI: 1.04–1.14) in the elderly in areas >60 vs. <55 dB. Nighttime noise was associated with stroke admissions only among the elderly. Daytime noise was significantly associated with all-cause mortality in adults [RR 1.04 (95% CI: 1.00–1.07) in areas >60 vs. <55 dB]. Positive but non-significant associations were seen with mortality for cardiovascular and ischaemic heart disease, and stroke. Results were similar for the elderly. Conclusions Long-term exposure to road traffic noise was associated with small increased risks of all-cause mortality and cardiovascular mortality and morbidity in the general population, particularly for stroke in the elderly.


Environment International | 2014

Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies

Kees de Hoogh; Michal Korek; Danielle Vienneau; Menno Keuken; Jaakko Kukkonen; Mark J. Nieuwenhuijsen; Chiara Badaloni; Rob Beelen; Andrea Bolignano; Giulia Cesaroni; Marta Cirach Pradas; Josef Cyrys; John Douros; Marloes Eeftens; Francesco Forastiere; Bertil Forsberg; Kateryna Fuks; Ulrike Gehring; Alexandros Gryparis; John Gulliver; Anna Hansell; Barbara Hoffmann; Christer Johansson; Sander Jonkers; Leena Kangas; Klea Katsouyanni; Nino Künzli; Timo Lanki; Michael Memmesheimer; N. Moussiopoulos

BACKGROUND Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. OBJECTIVES Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. METHODS The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. RESULTS The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519 (4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74 (0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. CONCLUSIONS LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5.


Environmental Modelling and Software | 2015

Development of an open-source road traffic noise model for exposure assessment

John Gulliver; David Morley; Danielle Vienneau; Federico Fabbri; Margaret Bell; Paul Goodman; Sean Beevers; David Dajnak; Frank J. Kelly; Daniela Fecht

This paper describes the development of a model for assessing TRAffic Noise EXposure (TRANEX) in an open-source geographic information system. Instead of using proprietary software we developed our own model for two main reasons: 1) so that the treatment of source geometry, traffic information (flows/speeds/spatially varying diurnal traffic profiles) and receptors matched as closely as possible to that of the air pollution modelling being undertaken in the TRAFFIC project, and 2) to optimize model performance for practical reasons of needing to implement a noise model with detailed source geometry, over a large geographical area, to produce noise estimates at up to several million address locations, with limited computing resources. To evaluate TRANEX, noise estimates were compared with noise measurements made in the British cities of Leicester and Norwich. High correlation was seen between modelled and measured LAeq,1hr (Norwich: r?=?0.85, p?=?.000; Leicester: r?=?0.95, p?=?.000) with average model errors of 3.1?dB. TRANEX was used to estimate noise exposures (LAeq,1hr, LAeq,16hr, Lnight) for the resident population of London (2003-2010). Results suggest that 1.03 million (12%) people are exposed to daytime road traffic noise levels???65?dB(A) and 1.63 million (19%) people are exposed to night-time road traffic noise levels???55?dB(A). Differences in noise levels between 2010 and 2003 were on average relatively small: 0.25?dB (standard deviation: 0.89) and 0.26?dB (standard deviation: 0.87) for LAeq,16hr and Lnight. Display Omitted Adaptation of the Calculation of Road Traffic Noise method for exposure assessment.Freely available open-source software (R with PostgreSQL and GRASS GIS).Model estimates compared well to noise measurements (r: ~0.85-0.95).Noise level exposures modelled for 8.61 million London residents (2003-2010).Over 1 million residents exposed to high daytime and night-time noise levels.


International Journal of Hygiene and Environmental Health | 2017

The exposome in practice: Design of the EXPOsOMICS project

Paolo Vineis; Marc Chadeau-Hyam; Hans Gmuender; John Gulliver; Zdenko Herceg; Jos Kleinjans; Manolis Kogevinas; Soterios Α. Kyrtopoulos; Mark J. Nieuwenhuijsen; David H. Phillips; Nicole Probst-Hensch; Augustin Scalbert; Roel Vermeulen; Christopher P. Wild

EXPOsOMICS is a European Union funded project that aims to develop a novel approach to the assessment of exposure to high priority environmental pollutants, by characterizing the external and the internal components of the exposome. It focuses on air and water contaminants during critical periods of life. To this end, the project centres on 1) exposure assessment at the personal and population levels within existing European short and long-term population studies, exploiting available tools and methods which have been developed for personal exposure monitoring (PEM); and 2) multiple “omic” technologies for the analysis of biological samples (internal markers of external exposures). The search for the relationships between external exposures and global profiles of molecular features in the same individuals constitutes a novel advancement towards the development of “next generation exposure assessment” for environmental chemicals and their mixtures. The linkage with disease risks opens the way to what are defined here as ‘exposome-wide association studies’ (EWAS).


Thorax | 2016

Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study

Anna Hansell; Rebecca Ghosh; Marta Blangiardo; Chloe Perkins; Danielle Vienneau; Kayoung Goffe; David Briggs; John Gulliver

Introduction Long-term air pollution exposure contributes to mortality but there are few studies examining effects of very long-term (>25 years) exposures. Methods This study investigated modelled air pollution concentrations at residence for 1971, 1981, 1991 (black smoke (BS) and SO2) and 2001 (PM10) in relation to mortality up to 2009 in 367 658 members of the longitudinal survey, a 1% sample of the English Census. Outcomes were all-cause (excluding accidents), cardiovascular (CV) and respiratory mortality. Results BS and SO2 exposures remained associated with mortality decades after exposure—BS exposure in 1971 was significantly associated with all-cause (OR 1.02 (95% CI 1.01 to 1.04)) and respiratory (OR 1.05 (95% CI 1.01 to 1.09)) mortality in 2002–2009 (ORs expressed per 10 μg/m3). Largest effect sizes were seen for more recent exposures and for respiratory disease. PM10 exposure in 2001 was associated with all outcomes in 2002–2009 with stronger associations for respiratory (OR 1.22 (95% CI 1.04 to 1.44)) than CV mortality (OR 1.12 (95% CI 1.01 to 1.25)). Adjusting PM10 for past BS and SO2 exposures in 1971, 1981 and 1991 reduced the all-cause OR to 1.16 (95% CI 1.07 to 1.26) while CV and respiratory associations lost significance, suggesting confounding by past air pollution exposure, but there was no evidence for effect modification. Limitations include limited information on confounding by smoking and exposure misclassification of historic exposures. Conclusions This large national study suggests that air pollution exposure has long-term effects on mortality that persist decades after exposure, and that historic air pollution exposures influence current estimates of associations between air pollution and mortality.


Environment International | 2016

Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies

Daniela Fecht; Anna Hansell; David Morley; David Dajnak; Danielle Vienneau; Sean Beevers; Mireille B. Toledano; Frank J. Kelly; H. Ross Anderson; John Gulliver

Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearmans rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearmans rho range: |0.01-0.87|) and was less for Boroughs (Spearmans rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and traffic-related air pollution can be reliably determined within London.


Environmental Research | 2016

Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data

Kees de Hoogh; John Gulliver; Aaron van Donkelaar; Randall V. Martin; Julian D. Marshall; Matthew J. Bechle; Giulia Cesaroni; Marta Cirach Pradas; Audrius Dedele; Marloes Eeftens; Bertil Forsberg; Claudia Galassi; Joachim Heinrich; Barbara Hoffmann; Bénédicte Jacquemin; Klea Katsouyanni; Michal Korek; Nino Künzli; Sarah Lindley; Johanna Lepeule; Frédérik Meleux; Audrey de Nazelle; Mark J. Nieuwenhuijsen; Wenche Nystad; Ole Raaschou-Nielsen; Annette Peters; V.-H. Peuch; Laurence Rouil; Orsolya Udvardy; Rémy Slama

Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models, all including local traffic and land use variables, were compared (LUR without SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network. LUR PM2.5 models including SAT and SAT+CTM explained ~60% of spatial variation in measured PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR2: 0.33-0.38). For NO2 CTM improved prediction modestly (adjR2: 0.58) compared to models without SAT and CTM (adjR2: 0.47-0.51). Both monitoring networks are capable of producing models explaining the spatial variance over a large study area. SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial resolution LUR models at the European scale for use in large epidemiological studies.


European Heart Journal | 2017

Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts

Yutong Cai; Anna Hansell; Marta Blangiardo; Paul R. Burton; Kees de Hoogh; Dany Doiron; Isabel Fortier; John Gulliver; Kristian Hveem; Stéphane Mbatchou; David Morley; Ronald P. Stolk; Wilma L. Zijlema; Paul Elliott; Susan Hodgson

Aims Blood biochemistry may provide information on associations between road traffic noise, air pollution, and cardiovascular disease risk. We evaluated this in two large European cohorts (HUNT3, Lifelines). Methods and results Road traffic noise exposure was modelled for 2009 using a simplified version of the Common Noise Assessment Methods in Europe (CNOSSOS-EU). Annual ambient air pollution (PM10, NO2) at residence was estimated for 2007 using a Land Use Regression model. The statistical platform DataSHIELD was used to pool data from 144 082 participants aged ≥20 years to enable individual-level analysis. Generalized linear models were fitted to assess cross-sectional associations between pollutants and high-sensitivity C-reactive protein (hsCRP), blood lipids and for (Lifelines only) fasting blood glucose, for samples taken during recruitment in 2006-2013. Pooling both cohorts, an inter-quartile range (IQR) higher day-time noise (5.1 dB(A)) was associated with 1.1% [95% confidence interval (95% CI: 0.02-2.2%)] higher hsCRP, 0.7% (95% CI: 0.3-1.1%) higher triglycerides, and 0.5% (95% CI: 0.3-0.7%) higher high-density lipoprotein (HDL); only the association with HDL was robust to adjustment for air pollution. An IQR higher PM10 (2.0 µg/m3) or NO2 (7.4 µg/m3) was associated with higher triglycerides (1.9%, 95% CI: 1.5-2.4% and 2.2%, 95% CI: 1.6-2.7%), independent of adjustment for noise. Additionally for NO2, a significant association with hsCRP (1.9%, 95% CI: 0.5-3.3%) was seen. In Lifelines, an IQR higher noise (4.2 dB(A)) and PM10 (2.4 µg/m3) was associated with 0.2% (95% CI: 0.1-0.3%) and 0.6% (95% CI: 0.4-0.7%) higher fasting glucose respectively, with both remaining robust to adjustment for air/noise pollution. Conclusion Long-term exposures to road traffic noise and ambient air pollution were associated with blood biochemistry, providing a possible link between road traffic noise/air pollution and cardio-metabolic disease risk.


Environmental Science & Technology | 2017

Land Use Regression Models for Ultrafine Particles in Six European Areas

Erik van Nunen; Roel Vermeulen; Ming-Yi Tsai; Nicole Probst-Hensch; Alex Ineichen; Mark Davey; Medea Imboden; Regina E. Ducret-Stich; Alessio Naccarati; Daniela Raffaele; Andrea Ranzi; Cristiana Ivaldi; Claudia Galassi; Mark J. Nieuwenhuijsen; Ariadna Curto; David Donaire-Gonzalez; Marta Cirach; Leda Chatzi; Mariza Kampouri; Jelle Vlaanderen; Kees Meliefste; Daan Buijtenhuijs; Bert Brunekreef; David Morley; Paolo Vineis; John Gulliver; Gerard Hoek

Long-term ultrafine particle (UFP) exposure estimates at a fine spatial scale are needed for epidemiological studies. Land use regression (LUR) models were developed and evaluated for six European areas based on repeated 30 min monitoring following standardized protocols. In each area; Basel (Switzerland), Heraklion (Greece), Amsterdam, Maastricht, and Utrecht (“The Netherlands”), Norwich (United Kingdom), Sabadell (Spain), and Turin (Italy), 160–240 sites were monitored to develop LUR models by supervised stepwise selection of GIS predictors. For each area and all areas combined, 10 models were developed in stratified random selections of 90% of sites. UFP prediction robustness was evaluated with the intraclass correlation coefficient (ICC) at 31–50 external sites per area. Models from Basel and The Netherlands were validated against repeated 24 h outdoor measurements. Structure and model R2 of local models were similar within, but varied between areas (e.g., 38–43% Turin; 25–31% Sabadell). Robustness of predictions within areas was high (ICC 0.73–0.98). External validation R2 was 53% in Basel and 50% in The Netherlands. Combined area models were robust (ICC 0.93–1.00) and explained UFP variation almost equally well as local models. In conclusion, robust UFP LUR models could be developed on short-term monitoring, explaining around 50% of spatial variance in longer-term measurements.

Collaboration


Dive into the John Gulliver's collaboration.

Top Co-Authors

Avatar

Anna Hansell

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Kees de Hoogh

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Morley

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

David Briggs

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Elliott

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge